Cho tam giác ABC vuông tại A, \(AB=6cm, AC=8cm\). Gọi \(V_1\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và \(V_2\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC. Khi đó, tỷ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiKhi quay tam giác ABC quanh cạnh AB ta có:
\(h = AB,r = AC \Rightarrow {V_1} = \frac{1}{3}\pi .{r^2}.h = \frac{1}{3}\pi {.8^2}.6 = 128\pi \,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Khi quay tam giác ABC quanh cạnh AC ta có:
\(h = AC,r = AB \Rightarrow {V_2} = \frac{1}{3}\pi .{r^2}.h = \frac{1}{3}\pi {.6^2}.8 = 96\pi \,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy \(\frac{{{V_1}}}{{{V_2}}} = \frac{{128}}{{96}} = \frac{4}{3}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
40 câu trắc nghiệm chuyên đề Mặt nón, mặt trụ, mặt cầu có lời giải ôn thi THPTQG năm 2019
10/11/2024
0 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9