Cho tứ giác \(ABCD\) biết số đo của 4 góc của tứ giác lập thành cấp số cộng và có 1 góc có số đo bằng \({{30}^{0}},\) góc có số đo lớn nhất trong 4 góc của tứ giác này là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử \({{0}^{0}}<A<B<C<D<{{180}^{0}}\) và \(A,B,C,D\) lập thành 1 cấp số cộng, giả sử công sai \(d>0\left( * \right)\)
Khi đó: \(B=A+d,c=A+2d,D=A+3d\)
Nên \(A={{30}^{0}}\)
\(\Rightarrow {{S}_{4}}=A+B+C+D={{30}^{0}}+{{30}^{0}}+d+{{30}^{0}}+2d+{{30}^{0}}+3d={{120}^{0}}+6d={{360}^{0}}\)
\(\Leftrightarrow f={{40}^{0}}\Rightarrow D={{30}^{0}}+{{3.40}^{0}}={{150}^{0}}<{{180}^{0}}\) (thỏa mãn)
Nếu \(B={{30}^{0}}\Rightarrow {{S}_{4}}=A+B+C+D={{30}^{0}}-d+{{30}^{0}}+{{30}^{0}}+d+{{30}^{0}}+2d={{360}^{0}}\)
\(\Leftrightarrow {{120}^{0}}+2d={{360}^{0}}\Leftrightarrow d={{120}^{0}}\)
\(\Rightarrow D={{30}^{0}}+2d={{30}^{0}}+{{2.120}^{0}}={{270}^{0}}\) (không thỏa mãn)
Nếu \(C={{30}^{0}}\Rightarrow {{S}_{4}}=A+B+C+D={{30}^{0}}-2d+{{30}^{0}}-d+{{30}^{0}}+{{30}^{0}}+d={{360}^{0}}\)
\(\Leftrightarrow {{120}^{0}}-2d={{360}^{0}}\Leftrightarrow d=-{{120}^{0}}\) (không thỏa mãn)
Nếu \(D={{30}^{0}}\Rightarrow {{S}_{4}}=A+B+C+D={{30}^{0}}-3d+{{30}^{0}}-2d+{{30}^{0}}-d+{{30}^{0}}={{360}^{0}}\)
\(\Leftrightarrow {{120}^{0}}-6d={{360}^{0}}\Leftrightarrow d=-{{40}^{0}}\) (không thỏa mãn).
Vậy góc lớn nhất của tứ giác là \({{150}^{0}}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tiên Du 1 lần 3