Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y=f'\left( x \right)\) có đồ thị là đường cong trong hình bên dưới
Số điểm cực tiểu của hàm số \(h\left( x \right)=f\left( x \right)-\frac{3}{2}x\) là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(h\left( x \right)=f\left( x \right)-\frac{3}{2}x\)
\(h'\left( x \right)=f'\left( x \right)-\frac{3}{2}.\)
\(h'\left( x \right)=0\Leftrightarrow f'\left( x \right)=\frac{3}{2}\left( 1 \right)\)
Số nghiệm của phương trình \(\left( 1 \right)\) là số giao điểm của hai đường \(y=f'\left( x \right)\) và \(y=\frac{3}{2}.\)
Ta có bảng biến thiên sau:
Dựa vào bảng biến thiên ta có hàm số \(h\left( x \right)=f\left( x \right)-\frac{3}{2}x\) có 2 điểm cực tiểu.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tiên Du 1 lần 3
30/11/2024
114 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9