Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tiên Du 1 lần 3
-
Câu 1:
Trong các phương trình dưới đây, phương trình nào có tập nghiệm là: \(x=\frac{\pi }{2}+k\pi ,k\in \mathbb{Z}.\)
-
Câu 2:
Đồ thị hàm số \(y=\frac{x-2}{x+4}\) cắt trục tung tại điểm có tung độ bằng
-
Câu 3:
Cho hình chóp tứ giác có đáy là hình vuông cạnh \(a,\) khi cạnh đáy của hình chóp giảm đi 3 lần và vẫn giữ nguyên chiều cao thì thể tích của khối chóp giảm đi mấy lần:
-
Câu 4:
Chọn kết quả sai trong các kết quả dưới đây:
-
Câu 5:
Hàm số \(y=\sqrt{2x-{{x}^{2}}}\) nghịch biến trên khoảng:
-
Câu 6:
Tính đạo hàm của hàm số \(y={{x}^{2}}+1\)
-
Câu 7:
Tính đạo hàm của hàm số \(y=\sin x+\cot x\)
-
Câu 8:
Thể tích của khối chóp có diện tích đáy bằng B, chiều cao bằng h là
-
Câu 9:
Cho khối lăng trụ có thể tích là V, diện tích đáy là B, chiều cao là h. Tìm khẳng định đúng trong các khẳng định sau:
-
Câu 10:
Xét phép thử T: “Gieo một con súc sắc cân đối và đồng chất” và biến cố A liên quan đến phép thử: “Mặt lẻ chấm xuất hiện”. Chọn khẳng định sai trong những khẳng định dưới đây:
-
Câu 11:
Cho hàm số \(y={{x}^{3}}-3{{x}^{2}}.\) Mệnh đề nào dưới đây đúng?
-
Câu 12:
Giá trị lớn nhất của hàm số \(y=2{{x}^{3}}-3{{x}^{2}}+{{10}^{2020}}\) trên đoạn \(\left[ -1;1 \right]\) là:
-
Câu 13:
Hàm số \(y=-{{x}^{4}}+2{{x}^{2}}+3\) có giá trị cực tiểu là
-
Câu 14:
Cho khối chóp có thể tích là V, khi diện tích của đa giác đáy giảm đi ba lần thì thể tích của khối chóp bằng bao nhiêu.
-
Câu 15:
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của \(f'\left( x \right)\) như sau:
Số điểm cực trị của hàm số đã cho là
-
Câu 16:
Hàm số nào sau đây đồng biến trên \(\mathbb{R}?\)
-
Câu 17:
Một lớp học có 40 học sinh, chọn 2 bạn tham gia đội “Thanh niên tình nguyện” của trường, biết rằng bạn nào trong lớp cũng có khả năng để tham gia đội này. Số cách chọn là:
-
Câu 18:
Mệnh đề nào sau đây sai:
-
Câu 19:
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình bên dưới.
Khi đó
-
Câu 20:
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình bên dưới
Hàm số \(y=f\left( x \right)\) có đường tiệm cận đứng là?
-
Câu 21:
Số hạng chứa \({{x}^{15}}{{y}^{9}}\) trong khai triển nhị thức \({{\left( xy-{{x}^{2}} \right)}^{12}}\) là:
-
Câu 22:
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B,AB=a,AC=a\sqrt{3},\) \(SB=a\sqrt{5},SA\bot \left( ABC \right).\) Tính thể tích khối chóp \(S.ABC.\)
-
Câu 23:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a,AD=a\sqrt{2},\) đường thẳng \(SA\) vuông góc với \(mp\left( ABCD \right).\) Góc giữa \(SC\) và \(mp\left( ABCD \right)\) bằng \({{60}^{0}}.\) Tính thể tích khối chóp \(S.ABCD\)
-
Câu 24:
Cho hàm số \(y=\frac{1}{3}{{x}^{3}}-\frac{1}{2}\left( m+3 \right){{x}^{2}}+{{m}^{2}}x+1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x=1?\)
-
Câu 25:
Cho hàm số \(y=\frac{mx-8}{2x-m}.\) Tìm tất cả các giá trị thực của tham số \(m\) để hàm số đồng biến trên từng khoảng xác định
-
Câu 26:
Một vật có phương trình chuyển động \(S\left( t \right)=4,9{{t}^{2}};\) trong đó t tính bằng (s), S(t) tính bắng mét (m). Vận tốc của vật tại thời điểm \(t=6s\) bằng
-
Câu 27:
Cho hình chóp có đáy là tam giác đều cạnh bằng 2, chiều cao của khối chóp bằng 4. Tính thể tích của khối chóp.
-
Câu 28:
Cho tứ giác \(ABCD\) biết số đo của 4 góc của tứ giác lập thành cấp số cộng và có 1 góc có số đo bằng \({{30}^{0}},\) góc có số đo lớn nhất trong 4 góc của tứ giác này là:
-
Câu 29:
Cho lăng trụ đứng \(ABC.A'B'C'\) có \(BB'=a,\) đáy \(ABC\) là tam giác vuông cân tại \(B,AB=a.\) Tính thể tích của khối lăng trụ.
-
Câu 30:
Tính thể tích khối tứ diện đều có cạnh bằng 2.
-
Câu 31:
Cho hàm số \(y=\left| x+\sqrt{16-{{x}^{2}}} \right|+a\) có giá trị lớn nhất và nhỏ nhất lần lượt là \(m,M,\) Biết \(m+M={{a}^{2}}.\) Tìm tích \(P\) tất cả giá trị \(a\) thỏa mãn đề bài.
-
Câu 32:
Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA=AB=a.\) Góc giữa \(SA\) và \(CD\) là
-
Câu 33:
Tính giới hạn \(I=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\frac{3{{x}^{2}}-2}{x-2}\)
-
Câu 34:
Cho hàm số \(y=-{{x}^{4}}+\left( {{m}^{2}}-m \right){{x}^{2}}.\) Tìm \(m\) để hàm số có đúng một cực trị.
-
Câu 35:
Đồ thị hàm số \(y=\frac{{{x}^{2}}-3x+2}{{{x}^{3}}-x}\) có mấy đường tiệm cận?
-
Câu 36:
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a.\) Gọi \(M;N\) lần lượt là trung điểm của \(SA\) và \(BC.\) Biết góc giữa \(MN\) và mặt phẳng \(\left( ABCD \right)\) bằng \({{60}^{0}}.\) Khoảng cách giữa hai đường thẳng \(BC\) và \(DM\) là:
-
Câu 37:
Tìm số hạng không chứa \(x\) trong khai triển \({{\left( x-\frac{2}{x} \right)}^{n}},n\in {{\mathbb{N}}^{*}}\) biết \(C_{n}^{1}-2.2.C_{n}^{2}+{{3.2}^{2}}.C_{n}^{3}-{{4.2}^{3}}.C_{n}^{4}+{{5.2}^{4}}C_{n}^{5}+...+{{\left( -1 \right)}^{n}}.n{{.2}^{n-1}}C_{n}^{n}=-2022\)
-
Câu 38:
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật. Biết \(AB=a\sqrt{2},AD=2a,SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{2}.\) Góc giữa hai đường thẳng \(SC\) và \(AB\) bằng
-
Câu 39:
Cho hàm số \(f\left( x \right)=\left| 3{{x}^{3}}-9{{x}^{2}}+12x+m+2 \right|.\) Có bao nhiêu giá trị nguyên của \(m\in \left[ -20;30 \right]\) sao cho với mọi số thực \(a,b,c\in \left[ 1;3 \right]\) thì \(f\left( a \right),f\left( b \right),f\left( c \right)\) là độ dài ba cạnh của một tam giác.
-
Câu 40:
Cho hình chóp \(S.ABC\) có \(AB=AC=5a;BC=6a.\) Các mặt bên tạo với đáy góc \({{60}^{0}}.\) Tính thể tích khối chóp \(S.ABC\)
-
Câu 41:
Cho hàm số \(f\left( x \right).\) Hàm số \(y=f'\left( x \right)\) có đồ thị như hình bên dưới
Hàm số \(g\left( x \right)=f\left( 1-2x \right)+{{x}^{2}}-x\) nghịch biến trên khoảng nào dưới đây?
-
Câu 42:
Cho hàm số \(f\left( x \right)\) liên tục trên tập R và biết \(y=f'\left( x \right)\) có đồ thị là đường cong trong hình bên dưới
Số điểm cực tiểu của hàm số \(h\left( x \right)=f\left( x \right)-\frac{3}{2}x\) là
-
Câu 43:
Cho biết đồ thị hàm số \(y={{x}^{4}}-2m{{x}^{2}}-2{{m}^{2}}+{{m}^{4}}\) có 3 điểm cực trị \(A,B,C\) cùng với điểm \(D\left( 0;-3 \right)\) là 4 đỉnh của một hình thoi. Gọi \(S\) là tổng các giá trị \(m\) thỏa mãn đề bài thì \(S\) thuộc khoảng nào sau đây
-
Câu 44:
Cho hình hộp \(ABCD.A'B'C'D'\) có đáy là hình chữ nhật, \(AB=\sqrt{3},AD=\sqrt{7}.\) Hai mặt bên \(\left( ABB'A' \right)\) và \(\left( ADD'A' \right)\) lần lượt tạo với đáy góc \({{45}^{0}}\) và \({{60}^{0}},\) biết cạnh bên bằng 1. Tính thể tích khối hộp.
-
Câu 45:
Cho \(f\left( x \right)=\sqrt{{{x}^{2}}-2x+4}-\frac{1}{2}x+2020\) và \(h\left( x \right)=f\left( 3\sin x \right).\) Số nghiệm thuộc đoạn \(\left[ \frac{\pi }{6};6\pi \right]\) của phương trình \(h'\left( x \right)=0\) là
-
Câu 46:
Cho hàm số \(f\left( x \right).\) Hàm số \(y=f'\left( x \right)\) có đồ thị như hình bên dưới.
Hàm số \(g\left( x \right)=f\left( 3-4x \right)-8{{x}^{2}}+12x+2020\) nghịch biến trên khoảng nào dưới đây?
-
Câu 47:
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ.
Trong đoạn \(\left[ -20;20 \right]\), có bao nhiêu số nguyên \(m\) để hàm số \(y=\left| 10f\left( x-m \right)-\frac{11}{3}{{m}^{2}}+\frac{37}{3}m \right|\) có 3 điểm cực trị?
-
Câu 48:
Cho tứ diện đều \(ABCD\) có cạnh bằng 1, gọi \(M\) là trung điểm \(AD\) và \(N\) trên cạnh \(BC\) sao cho \(BN=2NC.\) Khoảng cách giữa hai đường thẳng \(MN\) và \(CD\) là
-
Câu 49:
Cho hình chóp tứ giác \(S.ABCD\) có \(SA=x\) và tất cả các cạnh còn lại đều bằng 1. Khi thể tích khối chóp \(S.ABCD\) đạt giá trị lớn nhất thì \(x\) nhận giá trị nào sau đây?
-
Câu 50:
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng