Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiSố cách xếp 10 học sinh vào 10 vị trí: \(n\left( \Omega \right)=10!\) cách.
Gọi \(A\) là biến cố: “Trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau”.
Sắp xếp 5 học sinh lớp 12C vào 5 vị trí, có 5! cách.
Ứng mỗi cách xếp 5 học sinh lớp 12C sẽ có 6 khoảng trống gồm 4 vị trí ở giữa và hai vị trí hai đầu để xếp các học sinh còn lại
|
C1 |
|
C2 |
|
C3 |
|
C4 |
|
C5 |
|
Ứng với mỗi cách xếp đó, chọn lấy 1 trong 2 học sinh lớp 12A xếp vào vị trí trống thứ 4 (để hai học sinh lớp 12C không được ngồi cạnh nhau), có 2 cách.
Học sinh lớp 12A còn lại có 8 vị trí để xếp, có 8 cách.
Theo quy tắc nhân, ta có \(5!.A_{4}^{3}.2.8\) cách.
TH2: Xếp 2 trong 3 học sinh lớp 12B vào 4 vị trí trống ở giữa và học sinh còn lại xếp vào hai đầu, có \(C_{3}^{1}.2.A_{4}^{2}\) cách.
Ứng với mỗi cách xếp đó sẽ còn 2 vị trí trống ở giữa, xếp 2 học sinh lớp 12A vào vị trí đó, có 2 cách.
Theo quy tắc nhân, ta có \(5!.C_{3}^{1}.2.A_{4}^{2}.2\) cách.
Do đó số cách xếp không có học sinh cùng lớp ngồi cạnh nhau là:
\(n\left( A \right)=5!.2.8+5!.C_{3}^{1}.2.A_{4}^{2}.2=63360\) cách.
Vậy \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{63360}{10!}=\frac{11}{630}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tiên Du 1 lần 3