Có bao nhiêu giá trị nguyên \({b>1}\) để với mỗi giá trị của \({b}\) có đúng 5 số nguyên \(a\in \left( -10;10 \right)\) thỏa mãn \({\log _{3} \frac{2 a^{2}+3 a+b}{a^{2}-a+2} \leq a^{2}-6 a+7-b}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \({\log _{3} \frac{2 a^{2}+3 a+b}{a^{2}-a+2} \leq a^{2}-6 a+7-b \Leftrightarrow \log _{3} \frac{2 a^{2}+3 a+b}{3 a^{2}-3 a+6}+2 a^{2}+3 a+b \leq 3 a^{2}-3 a+6}\)
\(\Leftrightarrow {{\log }_{3}}\left( 2{{a}^{2}}+3a+b \right)+2{{a}^{2}}+3a+b\le {{\log }_{3}}\left( 3{{a}^{2}}-3a+6 \right)+3{{a}^{2}}-3a+6\,\,\,\,\,\,\,\,\,\,\left( * \right)\)
Xét hàm số \(f\left( t \right)=t+{{\log }_{3}}t,t>0\Rightarrow {f}'\left( t \right)=1+\frac{1}{t\ln 3}>0,\forall t>0\) nên hàm số \(f\left( t \right)=t+{{\log }_{3}}t\) đồng biến trên khoảng \(\left( 0;+\infty \right)\).
Suy ra\(\left( * \right)\Leftrightarrow f\left( 2{{a}^{2}}+3a+b \right)\le f\left( 3{{a}^{2}}-3a+6 \right)\Leftrightarrow 2{{a}^{2}}+3a+b\le 3{{a}^{2}}-3a+6\Leftrightarrow b\le {{a}^{2}}-6a+6\)
Xét hàm số \({y=a^{2}-6 a+6}\) có bảng biến thiên
Từ BBT, ta có: \({\mathrm{YCBT} \Leftrightarrow 46<b \leq 61}\).
Vậy có 15 giá trị thoả mãn.
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Nguyễn Kiệm