Có chiếc ghế được kê thành một hàng ngang. Xếp ngẫu nhiên 6 học sinh, gồm 3 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C, ngồi vào hàng ghế đó, sao cho mỗi ghế có đúng một học sinh. Xác suất để học sinh lớp C chỉ ngồi cạnh học sinh lớp B bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXếp tất cả 6 học sinh vào 6 ghế theo một hàng ngang, ta có số phần tử không gian mẫu \(n\left( \Omega \right) = 6!\) (cách).
Gọi D là biến cố học sinh lớp C chỉ ngồi cạnh học sinh lớp B
Trường hợp 1: Xếp học sinh lớp C ở đầu hàng hoặc cuối hàng
Số cách chọn học sinh lớp C ngồi vào 2 vị trí đầu hoặc cuối là: 2 (cách).
Số cách chọn 1 học sinh lớp B trong 2 học sinh lớp B ngổi cạnh C là: 2 (cách).
Số cách xếp 4 học sinh còn lại ( 1 học sinh lớp B và 3 học sinh lớp A) là: 4! (cách).
Số cách xếp ở trường hợp 1 là: 2.2.4! (cách).
Trường hợp 2: học sinh lớp C ngồi giữa hai học sinh lớp B (buộc lại xem như một đơn vị cần xếp có dạng BCB)
Số cách xếp học sinh lớp B là: 2 (cách).
Số cách xếp ở trường hợp 2 là: 2.4! (cách). (gồm 3 bạn lớp A và phần được buộc lại)
Khi đó số phần tử biến cố D là: \(n\left( D \right) = 2.2.4! + 2.4! = 6.4!\) (cách).
Xác suất biến cố D là: \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{6.4!}}{{6!}} = \frac{1}{5}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trần Quốc Tuấn