Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y = - 3{x^2} + x + 4\) và trục hoành. Gọi \(S_1\) và \(S_2\) lần lượt là diện tích phần hình (H) nằm bên trái và bên phải trục tung. Tính tỉ số \(\frac{{{S_1}}}{{{S_2}}}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \( - 3{x^2} + x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = \frac{4}{3}
\end{array} \right.\)
Khi đó:
\({S_1} = \int\limits_{ - 1}^0 {\left| { - 3{x^2} + x + 4} \right|dx = } \int\limits_{ - 1}^0 {\left( { - 3{x^2} + x + 4} \right)dx = \left( { - {x^3} + \frac{1}{2}{x^2} + 4x} \right)\left| \begin{array}{l}
^0\\
_{ - 1}
\end{array} \right. = 0 - \left( {1 + \frac{1}{2} - 4} \right) = \frac{5}{2}} \)
\({S_2} = \int\limits_0^{\frac{4}{3}} {\left| { - 3{x^2} + x + 4} \right|dx = } \int\limits_0^{\frac{4}{3}} {\left( { - 3{x^2} + x + 4} \right)dx = \left( { - {x^3} + \frac{1}{2}{x^2} + 4x} \right)\left| \begin{array}{l}
^{\frac{4}{3}}\\
_0
\end{array} \right. = \left( { - \frac{{64}}{{27}} + \frac{8}{9} + \frac{{16}}{3}} \right) - 0 = \frac{{104}}{{27}}} \)
\(\frac{{{S_1}}}{{{S_2}}} = \frac{{135}}{{208}}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Quốc học Huế lần 2