Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số \(y = \frac{{x + 3}}{{x + 1}}\) tại hai điểm M, N sao cho độ dài MN nhỏ nhất:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình hoành độ giao điểm của 2 đồ thị hàm số là:
\(2x + m = \frac{{x + 3}}{{x + 1}}\left( {x \ne 1} \right) \Leftrightarrow 2{x^2} + (m + 1)x + m - 3 = 0\) (*)
Ta có: \(\Delta = {\left( {m + 1} \right)^2} - 8(m - 3) = {m^2} - 6m + 25 = {(m - 3)^2} + 16 > 0\forall m\)
=> (*) luôn có hai nghiệm phân biệt với mọi m.
Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \frac{{m + 1}}{2}\\
{x_1}{x_2} = \frac{{m - 3}}{2}
\end{array} \right.\)
Gọi \(M({x_1};2{x_1} + m),N({x_2};2{x_2} + m)\) là hai giao điểm của 2 đồ thị hàm số.
Khi đó ta có:
\(\begin{array}{l}
M{N^2} = {\left( {{x_2} - {x_1}} \right)^2} + {\left( {2{x_2} - 2{x_1}} \right)^2} = 5{({x_2} - {x_1})^2}\\
= 5\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 5\left[ {\frac{{{{\left( {m + 1} \right)}^2}}}{4} - 4.\frac{{m - 3}}{2}} \right]\\
= \frac{5}{4}\left( {{m^2} + 2m + 1 - 8m + 24} \right) = \frac{5}{4}\left( {{m^2} - 6m + 25} \right)\\
= \frac{5}{4}{\left( {m - 3} \right)^2} + 20 \ge 20\forall m
\end{array}\)
Dấu “=” xảy ra \( \Leftrightarrow m - 3 = 0 \Leftrightarrow m = 3\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên KHTN - Hà Nội