Tìm tập nghiệm S của bất phương trình \({{\log }_{2}}\left( 3x-2 \right)>{{\log }_{2}}\left( 6-5x \right)\).
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐK: \(\left\{ \begin{array}{l}
3x - 2 > 0\\
6 - 5x > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > \frac{2}{3}\\
x < \frac{6}{5}
\end{array} \right. \Rightarrow \frac{2}{3} < x < \frac{6}{5}\)
\(\begin{array}{l}
{\log _2}\left( {3x - 2} \right) > {\log _2}\left( {6 - 5x} \right)\\
\Leftrightarrow 3x - 2 > 6 - 5x\\
\Leftrightarrow 8x > 8\\
\Leftrightarrow x > 1.
\end{array}\)
Kết hợp điều kiện ta có \(1< x < \frac{6}{5}\Rightarrow S=\left( 1; \frac{6}{5} \right)\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9