Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ)
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐặt \(OA = x \Rightarrow AB = 2x\left( {x > 0} \right)\).
Áp dụng định lí Pytago trong tam giác vuông OAD ta có:
\(AD = \sqrt {O{D^2} - O{A^2}} = \sqrt {100 - {x^2}} \)
\( \Rightarrow {S_{ABCD}} = AB.AD = 2x.\sqrt {100 - {x^2}} \le {x^2} + 100 - {x^2} = 100\)
Vậy diện tích lớn nhất của hình chữ nhật ABCD là 100 cm2, dấu “=” xảy ra \( \Leftrightarrow {x^2} = 100 - {x^2} \Leftrightarrow x = 5\sqrt 2 \left( {cm} \right)\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Thái Nguyên lần 1
10/11/2024
2 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9