Trong hệ tọa độ \(\text{O}xyz\), cho điểm \(A\left( 2;1;3 \right)\), mặt phẳng \((\alpha ):2x+2y-z-3=0\) và mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-4y-10z+2=0\). Gọi \(\Delta \) là đường thẳng đi qua A, nằm trong mặt phẳng \((\alpha )\) và cắt (S) tại hai điểm M,N. Độ dài đoạn MN nhỏ nhất là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+ Mặt cầu (S) có tâm \(I\left( 3;2;5 \right)\) và bán kính R=6.
Ta có: \(A\in (\alpha ),IA=\sqrt{6}<R\) nên \((S)\cap (\alpha )=(C)\) và A nằm trong mặt cầu (S).
Suy ra: Mọi đường thẳng \(\Delta \) đi qua A, nằm trong mặt phẳng \((\alpha )\) đều cắt (S) tại hai điểm M,N. (M,N cũng chính là giao điểm của \(\Delta \) và (C)).
+ Vì \(d(I,\Delta )\le IA\) nên ta có: \(MN=2\sqrt{{{R}^{2}}-{{d}^{2}}(I,\Delta )}\ge 2\sqrt{{{R}^{2}}-I{{A}^{2}}}=2\sqrt{30}\).
Dấu ''='' xảy ra khi A là điểm chính giữa dây cung MN.
Vậy độ dài đoạn MN nhỏ nhất là MN bằng \(2\sqrt{30}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Võ Thị Sáu lần 2