Với các số thực \(a,\,\,b > 0,\,\,a \ne 1\) tùy ý, biểu thức \({\log _{{a^2}}}\left( {a{b^2}} \right)\) bằng:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\({\log _{{a^2}}}\left( {a{b^2}} \right) = {\log _{{a^2}}}a + {\log _{{a^2}}}{b^2} = \dfrac{1}{2}{\log _a}a + \dfrac{1}{2}.2.{\log _a}b = \dfrac{1}{2} + {\log _a}b.\)
Chọn C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9