Xét các khẳng định sau
i) Nếu hàm số \(y=f\left( x \right)\) có đạo hàm dương với mọi \(x\) thuộc tập số \(D\) thì \(f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right),\forall {{x}_{1,}}{{x}_{2}}\in D,{{x}_{1}}<{{x}_{2}}\)
ii) Nếu hàm số \(y=f\left( x \right)\) có đạo hàm âm với mọi \(x\) thuộc tập số D thì \(f\left( {{x}_{1}} \right)>f\left( {{x}_{2}} \right),\forall {{x}_{1,}}{{x}_{2}}\in D,{{x}_{1}}<{{x}_{2}}\)
iii) Nếu hàm số \(y=f\left( x \right)\) có đạo hàm dương với mọi \(x\) thuộc \(\mathbb{R}\) thì \(f\left( {{x}_{1}} \right)<f\left( {{x}_{2}} \right),\forall {{x}_{1,}}{{x}_{2}}\in \mathbb{R},{{x}_{1}}<{{x}_{2}}\)
iv) Nếu hàm số \(y=f\left( x \right)\) có đạo hàm âm với mọi \(x\) thuộc \(\mathbb{R}\) thì \(f\left( {{x}_{1}} \right)>f\left( {{x}_{2}} \right),\forall {{x}_{1,}}{{x}_{2}}\in \mathbb{R},{{x}_{1}}<{{x}_{2}}\)
Số khẳng định đúng là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiSố khẳng định đúng là iii) và iv).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Quế Võ 1 lần 2