Cho hình vuông ABCD và tam giác đều SAD nằm trong hai mặt phẳng vuông góc với nhau và AD = a. Tính khoảng cách giữa AD và SB.
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiGọi E, F lần lượt là trung điểm AD, BC.
Ta có: \(AD,BC \bot (SFE)\), suy ra SF là hình chiếu của SB lên mặt phẳng (SEF)
Nên
\(d(AD;SB) = d(E;SF) = \frac{{SE.FE}}{{\sqrt {S{E^2} + F{E^2}} }} = \frac{{a\frac{{\sqrt 3 }}{2}a}}{{\sqrt {\frac{3}{4}{a^2} + {a^2}} }} = \frac{{\sqrt {21} }}{7}a\)
ADMICRO
YOMEDIA
ZUNIA9