Giải phương trình \({\sin ^2}2x + {\sin ^2}4x = {\sin ^2}6x\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
{\sin ^2}2x + {\sin ^2}4x = {\sin ^2}6x\\
\Leftrightarrow \frac{{1 - \cos 4x}}{2} + {\sin ^2}4x = \frac{{1 - \cos 12x}}{2}\\
\Leftrightarrow 1 - \cos 4x + 2{\sin ^2}4x = 1 - \cos 12x\\
\Leftrightarrow 2{\sin ^2}4x + \cos 12x - \cos 4x = 0\\
\Leftrightarrow 2{\sin ^2}4x - 2\sin 8x\sin 4x = 0\\
\Leftrightarrow 2{\sin ^2}4x - 4{\sin ^2}4x\cos 4x = 0\\
\Leftrightarrow 2{\sin ^2}4x\left( {1 - 2\cos 4x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin 4x = 0\\
\cos 4x = \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
4x = k\pi \\
4x = \pm \frac{\pi }{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{k\pi }}{4}\\
x = \pm \frac{\pi }{{12}} + \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)
Vậy \(x = {{k\pi } \over 4},x = \pm {\pi \over {12}} + {{k\pi } \over 2}\).