Giải phương trình \({\sin ^2}3x + {\sin ^2}4x = {\sin ^2}5x + {\sin ^2}6x\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
{\sin ^2}3x + {\sin ^2}4x = {\sin ^2}5x + {\sin ^2}6x\\
\Leftrightarrow \frac{{1 - \cos 6x}}{2} + \frac{{1 - \cos 8x}}{2}\\
= \frac{{1 - \cos 10x}}{2} + \frac{{1 - \cos 12x}}{2}\\
\Leftrightarrow 1 - \cos 6x + 1 - \cos 8x\\
= 1 - \cos 10x + 1 - \cos 12x\\
\Leftrightarrow \cos 6x + \cos 8x = \cos 10x + \cos 12x\\
\Leftrightarrow 2\cos 7x\cos x = 2\cos 11x\cos x\\
\Leftrightarrow 2\cos x\left( {\cos 7x - \cos 11x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos 7x = \cos 11x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
11x = 7x + k2\pi \\
11x = - 7x + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = \frac{{k\pi }}{2}\\
x = \frac{{k\pi }}{9}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{k\pi }}{2}\\
x = \frac{{k\pi }}{9}
\end{array} \right.
\end{array}\)
Vậy \(x = {{k\pi } \over 2};x = {{k\pi } \over 9}\).