Giải phương trình: \({\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = {3 \over 2}\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\({\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = {3 \over 2}\)
\(\begin{array}{l}
\Leftrightarrow \frac{{1 - \cos 2x}}{2} + \frac{{1 - \cos 4x}}{2} + \frac{{1 - \cos 6x}}{2} = \frac{3}{2}\\
\Leftrightarrow 1 - \cos 2x + 1 - \cos 4x + 1 - \cos 6x = 3\\
\Leftrightarrow \cos 2x + \cos 4x + \cos 6x = 0\\
\Leftrightarrow \left( {\cos 2x + \cos 6x} \right) + \cos 4x = 0\\
\Leftrightarrow 2\cos 4x\cos 2x + \cos 4x = 0\\
\Leftrightarrow \cos 4x\left( {2\cos 2x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 4x = 0\\
\cos 2x = - \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
4x = \frac{\pi }{2} + k\pi \\
2x = \pm \frac{{2\pi }}{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{8} + \frac{{k\pi }}{4}\\
x = \pm \frac{\pi }{3} + k\pi
\end{array} \right.
\end{array}\)
Vậy \(x = {\pi \over 8} + {{k\pi } \over 4},x = \pm {\pi \over 3} + k\pi \).