Nghiệm của hệ phương trình \({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\)
\(\begin{array}{l}
\Leftrightarrow \frac{{1 + \cos 2x}}{2} + \frac{{1 + \cos 4x}}{2}\\
+ \frac{{1 + \cos 6x}}{2} + \frac{{1 + \cos 8x}}{2} = 2\\
\Leftrightarrow 1 + \cos 2x + 1 + \cos 4x\\
+ 1 + \cos 6x + 1 + \cos 8x = 4\\
\Leftrightarrow \cos 2x + \cos 4x + \cos 6x + \cos 8x = 0\\
\Leftrightarrow 2\cos 3x\cos x + 2\cos 7x\cos x = 0\\
\Leftrightarrow 2\cos x\left( {\cos 3x + \cos 7x} \right) = 0\\
\Leftrightarrow 2\cos x.2\cos 5x\cos 2x = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos 2x = 0\\
\cos 5x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k\pi \\
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
x = \frac{\pi }{{10}} + \frac{{k\pi }}{5}
\end{array} \right.
\end{array}\)
Vậy \(x = {\pi \over 2} + k\pi ,x = {\pi \over 4} + {{k\pi } \over 2},\) \(x = {\pi \over {10}} + {{k\pi } \over 5}\)