Nghiệm của phương trình \(\sin 2x - 2{\sin ^2}x = 2\cos 2x\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}\sin 2x - 2{\sin ^2}x = 2\cos 2x\\ \Leftrightarrow \sin 2x - 2.\dfrac{{1 - \cos 2x}}{2} = 2\cos 2x\\ \Leftrightarrow \sin 2x - 1 + \cos 2x = 2\cos 2x\\ \Leftrightarrow \sin 2x - \cos 2x = 1\\ \Leftrightarrow \sqrt 2 \sin \left( {2x - \dfrac{\pi }{4}} \right) = 1\\ \Leftrightarrow \sin \left( {2x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\\ \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi \\2x - \dfrac{\pi }{4} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{4} + k\pi \\x = \dfrac{\pi }{2} + k\pi \end{array} \right.\end{array}\)
Vậy phương trình có nghiệm \(x = \dfrac{\pi }{4} + k\pi ,x = \dfrac{\pi }{2} + k\pi \).