Nghiệm của phương trình \(\sin 4x=\dfrac{2}{3}\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\dfrac{2}{3}=\sin(\arcsin\dfrac{2}{3})\)
Khi đó: \(\sin 4x=\sin(\arcsin\dfrac{2}{3})\)
\(\Leftrightarrow \left[ \begin{array}{l} 4x = \arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\\4x= \pi-\arcsin\dfrac{2}{3}+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\\x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\end{array} \right. \)
Vậy phương trình có các nghiệm là:
\(x = \dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)
và \(x=\dfrac{\pi}{4}-\dfrac{1}{4}\arcsin\dfrac{2}{3}+k\dfrac{\pi}{2} ,k \in \mathbb{Z}\)