Số họ nghiệm của phương trình \(2\sin x + \cot x = 2\sin 2x + 1\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVới điều kiện \(\sin x \ne 0,\) ta có:
\(\eqalign{
& 2\sin x + \cot x = 2\sin 2x + 1 \cr& \Leftrightarrow 2\sin x + \frac{{\cos x}}{{\sin x}} = 4\sin x\cos x + 1\cr&\Leftrightarrow 2{\sin ^2}x + \cos x = 4{\sin ^2}x\cos x + \sin x \cr
& \Leftrightarrow \left( {2{{\sin }^2}x - \sin x} \right) - \left( {4{{\sin }^2}x\cos x - \cos x} \right) = 0 \cr&\Leftrightarrow \sin x\left( {2\sin x - 1} \right) - \cos x\left( {2\sin x - 1} \right)\left( {2\sin x + 1} \right) = 0\cr&\Leftrightarrow \left( {2\sin x - 1} \right)\left( {\sin x - \cos x - 2\sin x\cos x} \right) = 0 \cr} \)
\( \Leftrightarrow \left[ \begin{array}{l}
2\sin x - 1 = 0\\
\sin x - \cos x - 2\sin x\cos x = 0
\end{array} \right.\)
+) \(2\sin x - 1 = 0\)
\( \Leftrightarrow \sin x = \frac{1}{2} \)
\(\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{6} + k2\pi \\
x = \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\)
+) \(\sin x - \cos x - 2\sin x\cos x = 0\)
Đặt \(t = \sin x - \cos x\) với \(\left| t \right| \le \sqrt 2 \) ta có:
\({t^2} = 1 - 2\sin x\cos x \) \(\Rightarrow 2\sin x\cos x = 1 - {t^2}\)
Thay vào phương trình trên ta được:
\(\begin{array}{l}
t - \left( {1 - {t^2}} \right) = 0\\
\Leftrightarrow {t^2} + t - 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
t = \frac{{ - 1 + \sqrt 5 }}{2}\,\left( {TM} \right)\\
t = \frac{{ - 1 - \sqrt 5 }}{2}\,\left( {loai} \right)
\end{array} \right.\\
\Rightarrow \sin x - \cos x = \frac{{ - 1 + \sqrt 5 }}{2}\\
\Rightarrow \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \frac{{ - 1 + \sqrt 5 }}{2}\\
\Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = \frac{{ - 1 + \sqrt 5 }}{{2\sqrt 2 }}\\
\Leftrightarrow \left[ \begin{array}{l}
x - \frac{\pi }{4} = \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2} + k2\pi \\
x - \frac{\pi }{4} = \pi - \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2} + k2\pi \\
x = \frac{{5\pi }}{4} - \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2} + k2\pi
\end{array} \right.
\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,x = \frac{{5\pi }}{6} + k2\pi\),\(x = \frac{\pi }{4} + \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2 } + k2\pi, \)\(x = \frac{{5\pi }}{4} - \arcsin \frac{{ - 1 + \sqrt 5 }}{2\sqrt 2} + k2\pi \)