Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVC0xf9qq1qpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacshacaGGHbGaaiOB % amaaCaaaleqabaGaaGOmaaaakiaaikdacaWG4bGaey4kaSYaaSaaae % aacaaIXaaabaGaaGOmaaaaaaa!41E9! f\left( x \right) = {\tan ^2}2x + \frac{1}{2}\) .
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVC0xf9qq1qpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaada % qadaqaaiGacshacaGGHbGaaiOBamaaCaaaleqabaGaaGOmaaaakiaa % ikdacaWG4bGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawI % cacaGLPaaacaqGKbGaamiEaaWcbeqab0Gaey4kIipakiabg2da9maa % peaabaWaaeWaaeaadaWcaaqaaiaaigdaaeaacaqGJbGaae4Baiaabo % hadaahaaWcbeqaaiaaikdaaaGccaaIYaGaamiEaaaacqGHsisldaWc % aaqaaiaaigdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaabsgacaWG4b % aaleqabeqdcqGHRiI8aOGaeyypa0ZaaSaaaeaaciGG0bGaaiyyaiaa % c6gacaaIYaGaamiEaaqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaWG4b % aabaGaaGOmaaaacqGHRaWkcaWGdbaaaa!5CD1! \int {\left( {{{\tan }^2}2x + \frac{1}{2}} \right){\rm{d}}x} = \int {\left( {\frac{1}{{{\rm{co}}{{\rm{s}}^2}2x}} - \frac{1}{2}} \right){\rm{d}}x} = \frac{{\tan 2x}}{2} - \frac{x}{2} + C\)