Xét tính chẵn lẻ của hàm số \(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiĐKXĐ: \(\sin x\ne 0\Leftrightarrow x\ne k\pi,k\in\mathbb{Z}\)
Khi đó tập xác định là \(D=\mathbb{R}\backslash{\left\{{k\pi,k\in\mathbb{Z}}\right\}}\)
Ta có: \(f( - x) =\dfrac{\cos (-x)+{\cot}^2 (-x)}{\sin (-x)}\)
\(=\dfrac{\cos x+{(-\cot x)}^2}{-\sin x}\)
\(=\dfrac{\cos x+{\cot}^2 x}{-\sin x}\)
\(=-\dfrac{\cos x+{\cot}^2 x}{\sin x}\)
\(=- f(x)\)
Vậy \(y=\dfrac{\cos x+{\cot}^2 x}{\sin x}\) là hàm số lẻ.
ADMICRO
YOMEDIA
ZUNIA9