Cho \(\Delta ABC\) vuông tại \(A\) có đường cao \(AH = 12cm\) và đường trung tuyến \(AM = 15cm\). Khẳng định nào sau đây là đúng?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\Delta ABC\) vuông tại \(A\) có \(AM\) là đường trung tuyến nên \(AM = \frac{{BC}}{2}\)\( \Rightarrow BC = 2AM\)\( = 2.15 = 30\,\,\left( {cm} \right)\).
Xét \(\Delta ABH\) và \(\Delta CBA\) có:
\(\angle AHB = \angle BAC\,\,\left( { = {{90}^0}} \right)\)
\(\angle B\) chung
\( \Rightarrow \Delta ABH \sim \Delta CBA\) (góc – góc)
\( \Rightarrow \frac{{AB}}{{CB}} = \frac{{AH}}{{AC}}\) (tỷ số cặp cạnh tương ứng)
\(\begin{array}{l} \Leftrightarrow AB.AC = AH.BC\\ \Leftrightarrow AB.AC = 12.30\\ \Leftrightarrow AB.AC = 360\\ \Leftrightarrow AB = \frac{{360}}{{AC}}\\ \Leftrightarrow A{B^2} = \frac{{{{360}^2}}}{{A{C^2}}}\end{array}\)
Xét \(\Delta ABC\) vuông tại \(A\), áp dụng định lý Py-ta-go ta có:
\( \Leftrightarrow \frac{{{{360}^2}}}{{A{C^2}}} + A{C^2} = {30^2}\)
\( \Leftrightarrow {360^2} + A{C^4} - 900A{C^2} = 0\)
\( \Leftrightarrow A{C^4} - 900A{C^2} + {360^2} = 0\)
\( \Leftrightarrow A{C^4} - 720A{C^2} - 180A{C^2} + {360^2} = 0\)
\( \Leftrightarrow \left( {A{C^4} - 720A{C^2}} \right) - \left( {180A{C^2} - {{360}^2}} \right) = 0\)
\(\begin{array}{l} \Leftrightarrow A{C^2}\left( {A{C^2} - 720} \right) - 180\left( {A{C^2} - 720} \right) = 0\\ \Leftrightarrow \left( {A{C^2} - 720} \right)\left( {A{C^2} - 180} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}A{C^2} - 720 = 0\\A{C^2} - 180 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}A{C^2} = 720\\A{C^2} = 180\end{array} \right.\end{array}\)
Trường hợp 1: \(A{C^2} = 720\)\( \Rightarrow A{B^2} = 180\).
Khi đó, ta có: \(\frac{{A{B^2}}}{{A{C^2}}} = \frac{{180}}{{720}} = \frac{1}{4}\)\( \Rightarrow \frac{{AB}}{{AC}} = \frac{1}{2}\)
Trường hợp 2: \(A{C^2} = 180\)\( \Rightarrow A{B^2} = 720\).
Khi đó, ta có: \(\frac{{A{B^2}}}{{A{C^2}}} = \frac{{720}}{{180}} = 4\)\( \Rightarrow \frac{{AB}}{{AC}} = 2\)
Chọn D.
Đề thi giữa HK2 môn Toán 8 năm 2021-2022
Trường THCS Nguyễn Du