Tọa độ của vec tơ đơn vị vuông góc với trục Ox và vuông góc với vec tơ \(\overrightarrow a (3;6;8).\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử \(\overrightarrow u (x;y;z)\) là vec tơ đơn vị phải tìm .Từ giả thiết ta có hệ :
\(\left\{ \matrix{ \left| {\overrightarrow u } \right| = 1 \hfill \cr \overrightarrow u .\overrightarrow i = 0 \hfill \cr \overrightarrow u .\overrightarrow a = 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ {x^2} + {y^2} + {z^2} = 1 \hfill \cr x = 0 \hfill \cr 3x + 6y + 8z = 0 \hfill \cr} \right.\)
\( \Leftrightarrow x = 0,y = - {4 \over 5},z = {3 \over 5}\) hoặc \(x = 0,y = {4 \over 5},z = - {3 \over 5}.\)
Có hai vec tơ \(\overrightarrow u \) với tọa độ là \(\left( {0; - {4 \over 5};{3 \over 5}} \right),\left( {0;{4 \over 5}; - {3 \over 5}} \right).\)