Cho tứ diện ABCD có AB = CD = a, \(IJ = \frac{{a\sqrt 3 }}{2}\)(I, J lần lượt là trung điểm của BC và AD). Số đo góc giữa hai đường thẳng AB và CD là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi M, N lần lượt là trung điểm AC, BC.
Ta có:
\(\left\{ \begin{array}{l} MI = NI = \frac{1}{2}AB = \frac{1}{2}CD = \frac{a}{2}\\ MI{\rm{ // }}AB{\rm{ // }}CD{\rm{ // }}NI \end{array} \right. \Rightarrow MINJ\) là hình thoi.
Gọi O là giao điểm của MN và IJ.
Ta có: \(\widehat {MIN} = 2\widehat {MIO}\).
Xét tam giác MIO vuông tại O, ta có:
\(\cos \widehat {MIO} = \frac{{IO}}{{MI}} = \frac{{\frac{{a\sqrt 3 }}{4}}}{{\frac{a}{2}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {MIO} = 30^\circ \Rightarrow \widehat {MIN} = 60^\circ \)
Mà \(\left( {AB,CD} \right) = \left( {IM,IN} \right) = \widehat {MIN} = 60^\circ \)