Giải phương trình \(\cos \left( {{\pi \over 7} - 3x} \right) = - {{\sqrt 3 } \over 2}\).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
\cos \left( {\frac{\pi }{7} - 3x} \right) = - \frac{{\sqrt 3 }}{2}\\
\Leftrightarrow \cos \left( {3x - \frac{\pi }{7}} \right) = \cos \left( {\frac{{5\pi }}{6}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
3x - \frac{\pi }{7} = \frac{{5\pi }}{6} + k2\pi \\
3x - \frac{\pi }{7} = - \frac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = \frac{{41\pi }}{{42}} + k2\pi \\
3x = - \frac{{29\pi }}{{42}} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{{41\pi }}{{126}} + \frac{{k2\pi }}{3}\\
x = - \frac{{29\pi }}{{126}} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}\)
Vậy \(x = {{41\pi } \over {126}} + k{{2\pi } \over 3},x = -{{29\pi } \over {126}} + k{{2\pi } \over 3}\)