Tập giá trị của hàm số \(y={\sin}^2 x+\sqrt{3}\sin x+2\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(y = \sin x\) có \( - 1 \le \sin x \le 1,\forall x \in \mathbb{R}\)
Đặt \(u=\sin x\) khi đó \(-1\le u\le 1\)
Hàm số \(y={\sin}^2 x+\sqrt{3}\sin x+2 \)
\(\Leftrightarrow y=u^2 +\sqrt{3}u+2\)
- Tìm giá trị lớn nhất
Ta có \(-1\le u\le 1\) nên \(u^2\le 1\) và \(u\le1\)
Nên khi đó \(y=u^2 +\sqrt{3}u+2\le 1+\sqrt{3}.1+2\)
\(=3+\sqrt{3}\)
Vậy hàm số đã cho đạt giá trị lớn nhất là \(3+\sqrt{3}\) tại \(u=1\)\(\Leftrightarrow \sin x=1\).
- Tìm giá trị nhỏ nhất
Hàm số \(y=u^2 +\sqrt{3}u+2\)
\(=\left[{u^2+2u\dfrac{\sqrt{3}}{2}+{\left({\dfrac{\sqrt{3}}{2}}\right)}^2}\right]-\)
\({\left({\dfrac{\sqrt{3}}{2}}\right)}^2+2\)
\(={\left({u+\dfrac{\sqrt{3}}{2}}\right)}^2+\dfrac{5}{4}\)
Do \({\left({u+\dfrac{\sqrt{3}}{2}}\right)}^2 \ge 0\) khi đó
\(y\ge \dfrac{5}{4}\)
Vậy giá trị nhỏ nhất của hàm số là \(\dfrac{5}{4}\) đạt được khi \(u=-\dfrac{\sqrt{3}}{2}\).
Vậy tập giá trị của hàm số là \(\left[{\dfrac{5}{4};3+\sqrt{3}}\right]\).