265 câu trắc nghiệm môn Đại số tuyến tính
Với hơn 265 câu trắc nghiệm môn Đại số tuyến tính có đáp án dành cho các bạn sinh viên Đại học - Cao đẳng ôn thi. Nội dung câu hỏi bao gồm những kiến thức về số phức, ma trận, hệ phương trình, định thức, độc lập tuyến tính, tọa độ vecto,... Để ôn tập hiệu quả các bạn có thể ôn theo từng phần trong bộ câu hỏi này bằng cách trả lời các câu hỏi và xem lại đáp án và lời giải chi tiết. Sau đó các bạn hãy chọn tạo ra đề ngẫu nhiên để kiểm tra lại kiến thức đã ôn.
Chọn hình thức trắc nghiệm (25 câu/45 phút)
Chọn phần
-
Câu 1:
Giải \({z^3} - i = 0\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
B. Các câu kia sai
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
D. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
-
Câu 2:
Tính \(z = \frac{{{{(1 - i)}^9}}}{{3 + i}}\)
A. \(\frac{{16}}{5} - \frac{{32i}}{5}\)
B. \(\frac{{8}}{5} - \frac{{32i}}{5}\)
C. \(\frac{{8}}{5} + \frac{{64i}}{5}\)
D. \(\frac{{16}}{5} + \frac{{32i}}{5}\)
-
Câu 3:
Tìm \(\sqrt[3]{i}\) trong trường số phức:
A. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{2}}};{z_2} = {e^{\frac{{7i\pi }}{6}}}\)
B. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{5i\pi }}{6}}};{z_2} = {e^{\frac{{9i\pi }}{6}}}\)
C. \({z_0} = {e^{\frac{{i\pi }}{6}}};{z_1} = {e^{\frac{{i\pi }}{3}}};{z_2} = {e^{\frac{{5i\pi }}{6}}}\)
D. Các câu kia đều sai
-
Câu 4:
Biểu diễn các số phức dạng \(z = {e^{2 + iy}},y \in R\) lên mặt phẳng phức là:
A. Đường tròn bán kính 2
B. Đường tròn bán kính e2
C. Đường thẳng \(y = {e^2}x\)
D. Đường thẳng x = 2 + y
-
Câu 5:
Cho các số phức \(z = {e^{a + 2i}},a \in R\). Biểu diễn những số đó lên mặt phẳng phức ta được:
A. Nửa đường thẳng
B. Đường thẳng
C. Đường tròn bán kính e
D. Đường tròn bán kính e2
-
Câu 6:
Cho số phức z có module bằng 5. Tìm module của số phức \(w = \frac{{z.{i^{2006}}}}{{\overline z }}\)
A. 1
B. 10030
C. 2010
D. 5
-
Câu 7:
Tính \(z = \frac{{2 + 3i}}{{1 + i}}\)
A. \(\frac{1}{2} + \frac{{3i}}{2}\)
B. \(\frac{5}{2} + \frac{{5i}}{2}\)
C. \(\frac{5}{2} - \frac{{i}}{2}\)
D. \(\frac{5}{2} + \frac{{i}}{2}\)
-
Câu 8:
Tìm argument φ của số phức \(z = \frac{{{{(1 + i\sqrt 3 )}^{10}}}}{{ - 1 + i}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ 7 \pi }}{{12}}\)
D. \(\varphi = \frac{{ \pi }}{{12}}\)
-
Câu 9:
Tìm argument φ của số phức \(z = {\textstyle{{1 + i\sqrt 3 } \over {1 + i}}}\)
A. \(\varphi = \frac{{ - \pi }}{{12}}\)
B. \(\varphi = \frac{{ \pi }}{{3}}\)
C. \(\varphi = \frac{{ - \pi }}{{4}}\)
D. \(\varphi = \frac{{7 \pi }}{{12}}\)
-
Câu 10:
Tập hợp tất cả các số phức \(\left| {z + 2 - i} \right| + \left| {z - 3 + 2i} \right| = 1\) trong mặt phẳng phức là:
A. Ellipse
B. Các câu kia sai
C. Đường thẳng
D. Đường tròn
-
Câu 11:
Tìm argument φ của số phức \(z = (1 + i\sqrt 3 )(1 - i)\)
A. \(\varphi = \frac{\pi }{{12}}\)
B. \(\varphi = \frac{\pi }{{3}}\)
C. \(\varphi = \frac{7\pi }{{12}}\)
D. \(\varphi = \frac{\pi }{{4}}\)
-
Câu 12:
Tập hợp tất cả các số phức \({e^2}(\cos \varphi + i\sin \varphi );0 \le \varphi \le \pi \) trong mặt phẳng phức là:
A. Đường tròn
B. Đường thẳng
C. Nửa đường tròn
D. 3 câu kia đều sai
-
Câu 13:
Tìm argument φ của số phức \(z = \frac{{2 + i\sqrt {12} }}{{1 + i}}\)
A. \(\varphi = \frac{\pi }{4}\)
B. \(\varphi = \frac{\pi }{3}\)
C. \(\varphi = \frac{7\pi }{12}\)
D. \(\varphi = \frac{\pi }{12}\)
-
Câu 14:
Giải phương trình trong trường số phức \(\left( {1 + 2i} \right)z = 3 + i\)
A. \(\frac{1}{2} - \frac{i}{2}\)
B. \(−1 + i. \)
C. \(z = 1 − i\)
D. \(z = 1 + i\)
-
Câu 15:
Tính \(z = \frac{{1 + {i^{2007}}}}{{2 + i}}\)
A. \(\frac{2}{5} + \frac{{ - i}}{5}\)
B. \(\frac{-2}{5} + \frac{{ i}}{5}\)
C. \(\frac{1}{5} - \frac{{ i}}{5}\)
D. \(\frac{1}{5}- \frac{{3}}{5}\)
-
Câu 16:
Tập hợp tất cả các số phức \(\left| {z - 5} \right| = \left| {z + 5} \right|\) trong mặt phẳng phức là:
A. Đường y = x.
B. Trục 0y
C. Trục 0x
D. Các câu kia sai
-
Câu 17:
Tìm số nguyên dương n nhỏ nhất để \({( - 1 + i\sqrt 3 )^n}\)
A. n = 1
B. Không tồn tại n
C. n = 3
D. n = 6
-
Câu 18:
Tìm argument φ của số phức \(z = \frac{{ - 1 + i\sqrt 3 }}{{{{(1 + i)}^{15}}}}\)
A. \(\varphi = \frac{\pi }{3}\)
B. \(\varphi = \frac{7\pi }{12}\)
C. \(\varphi = \frac{11\pi }{12}\)
D. \(\varphi = \frac{3\pi }{4}\)
-
Câu 19:
Tìm \(\sqrt i \) trong trường số phức:
A. \({z_1} = {e^{\frac{{ - i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
B. \({z_1} = {e^{\frac{{ 3i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
C. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{5i\pi }}{4}}}\)
D. \({z_1} = {e^{\frac{{ i\pi }}{4}}};{z_2} = {e^{\frac{{3i\pi }}{4}}}\)
-
Câu 20:
Giải phương trình \((2 + i)z = 1 - 3i\) trong C.
A. \(z = \frac{-1}{5} - \frac{{7i}}{5}\)
B. \(z = \frac{1}{5} +\frac{{7i}}{5}\)
C. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)
D. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
-
Câu 21:
Giải phương trình \((2 + i)z = {(1 - i)^2}\) trong C
A. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
B. \(z = \frac{1}{5} + \frac{{7i}}{5}\)
C. \(z = \frac{-2}{5} - \frac{{4i}}{5}\)
D. \(z = \frac{-2}{5}+ \frac{{4i}}{5}\)
-
Câu 22:
Tính \(z = \frac{{1 + 3i}}{{2 - i}}\)
A. \(z = \frac{-1}{5} + \frac{{7i}}{5}\)
B. \(1+i\)
C. \(z = \frac{1}{5} - \frac{{7i}}{5}\)
D. \(1-i\)
-
Câu 23:
Cho \(z = \frac{{{{(1 + i\sqrt 3 )}^5}}}{{4 - 3i}}\). Tìm module của z.
A. \(\frac{{16}}{5}\)
B. \(\frac{{32}}{5}\)
C. \(\frac{{32}}{25}\)
D. Ba câu kia sai
-
Câu 24:
Tìm \(\sqrt { - 9} \) trong trường số phức
A. z1 = −3; z2 = 3i.
B. z1 = 3i
C. z1 = 3i; z2 = −3i.
D. Các câu kia sai
-
Câu 25:
Tập hợp tất cả các số phức \(\left| {z + 4i} \right| = \left| {z - 4} \right|\) trong mặt phẳng phức là:
A. Trục 0y
B. Đường thẳng y = 4x.
C. Đường thẳng x + y = 0
D. Đường tròn