Đường tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{3 - 2x}}{{3x + 1}}\) là:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{3}} \right)}^ + }} \left( {3 - 2x} \right)\) \( = 3 - 2.\left( { - \frac{1}{3}} \right) = \frac{8}{3} > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{3}} \right)}^ + }} \left( {3x + 1} \right) = 0\\3x + 1 > 0,\forall x > - \frac{1}{3}\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ + }} \dfrac{{3 - 2x}}{{3x + 1}} = + \infty ;\)
Tương tự \(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ - }} \dfrac{{3 - 2x}}{{3x + 1}} = - \infty \), ta có \(x = - \dfrac{1}{3}\) là tiệm cận đứng