Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi giao điểm của \((\alpha )\) với ba tia Ox, Oy, Oz lần lượt là A(a; 0; 0), B(0; b; 0), C(0; 0 ; c)
(a, b, c > 0).
Mặt phẳng \((\alpha )\) có phương trình theo đoạn chắn là: \(\left( \alpha \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\) (1)
Do \((\alpha )\) đi qua M(1; 2; 3) nên ta thay tọa độ của điểm M vào (1): \(\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\)
Thể tích của tứ diện OABC là \(V = \dfrac{1}{3}B.h = \dfrac{1}{3}.\dfrac{1}{2}OA.OB.OC\) \( = \dfrac{1}{6}abc\)
Áp dụng bất đẳng thức Cô-si ta có: \(1 = \dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} \ge 3\sqrt[3]{{\dfrac{6}{{abc}}}} \) \( \Rightarrow 1 \ge \dfrac{{27.6}}{{abc}}\)
\( \Rightarrow abc \ge 27.6 \Rightarrow V \ge 27\)
Ta có: V đạt giá trị nhỏ nhất \( \Leftrightarrow V = 27 \Leftrightarrow \dfrac{1}{a} = \dfrac{2}{b} = \dfrac{3}{c} = \dfrac{1}{3} \) \(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 3}\\{b = 6}\\{c = 9}\end{array}} \right.\)
Vậy phương trình mặt phẳng \((\alpha )\) thỏa mãn đề bài là:
\(\dfrac{x}{3} + \dfrac{y}{6} + \dfrac{z}{9} = 1\) hay \(6x + 3y + 2z – 18 = 0\).