Một học sinh giải bất phương trình \({\left( {\frac{2}{{\sqrt 5 }}} \right)^{ – \frac{1}{x}}} \le {\left( {\frac{2}{{\sqrt 5 }}} \right)^{ – 5}}\).

Bước 1: Điều kiện \(x \ne 0\)

Bước 2: Vì \(0 < \frac{2}{{\sqrt 5 }} < 1\) nên \({\left( {\frac{2}{{\sqrt 5 }}} \right)^{ – \frac{1}{x}}} \le {\left( {\frac{2}{{\sqrt 5 }}} \right)^{ – 5}} \Leftrightarrow \frac{1}{x} \le 5\)

Bước 3: Từ đó suy ra \(1 \le 5x \Leftrightarrow x \ge \frac{1}{5}\). Vậy tập nghiệm của bất phương trình đã cho là \(S = \left[ {\frac{1}{5};\, + \infty } \right)\).

Suy nghĩ và trả lời câu hỏi trước khi xem đáp án

ATNETWORK
ADMICRO
YOMEDIA
ZUNIA9