Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2{x^2} - x + 2}}{{{x^2} - 5}}\)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiTa có:
\( \mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} \frac{{2{x^2} - x + 2}}{{{x^2} - 5}} = + \infty \) nên \( x = \sqrt 5 \) là đường tiệm cận đứng.
\( \mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} \frac{{2{x^2} - x + 2}}{{{x^2} - 5}} = - \infty \) nên \( x = -\sqrt 5 \) là đường tiệm cận đứng.
Vậy đồ thị hàm số có tiệm cận đứng là các đường thẳng \(x = \pm \sqrt 5 \)
Chọn B.
ADMICRO
YOMEDIA
ZUNIA9