Tìm giá trị của tham số m để hàm số\(y = - \dfrac{1}{3}({m^2} + 6m){x^3} - 2m{x^2} + 3x + 1\) đạt cực đại tại x = - 1.
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(y' = - ({m^2} + 6m){x^2} - 4mx + 3\)
\(y'( - 1) = - {m^2} - 6m + 4m + 3\)\( = ( - {m^2} - 2m - 1) + 4 = - {(m + 1)^2} + 4\)
Hàm số đạt cực đại tại \(x = - 1\) thì :
\(y'( - 1) = - {(m + 1)^2} + 4 = 0\)\( \Leftrightarrow {(m + 1)^2} = 4 \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = 1\end{array} \right.\)
Thử lại,
+) Với \(m = - 3\) ta có \(y' = 9{x^2} + 12x + 3\)
\( \Rightarrow y'' = 18x + 12\)\( \Rightarrow y''\left( { - 1} \right) = - 18 + 12 = - 6\; < 0\)
Suy ra hàm số đạt cực đại tại \(x = - 1\) (thỏa mãn).
+) Với \(m = 1\) ta có:
\(y' = - 7{x^2} - 4x + 3\)\( \Rightarrow y'' = - 14x - 4\) \( \Rightarrow y''( - 1) = 10 > 0\)
Suy ra hàm số đạt cực tiểu tại \(x = - 1\) (loại).
Kết luận: Hàm số đã cho đạt cực đại tại \(x = - 1\) khi \(m = - 3\).