Biết \(\int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx = - \frac{a}{b} + \frac{\pi }{c}} \) với \(a,\,\,b,\,\,c \in \mathbb{N}\), phân số \(\frac{a}{b}\) tối giản. Tính \(T = a + b + c.\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(I = \int\limits_0^{\frac{\pi }{4}} {\left( {{{\tan }^2}x + 2{{\tan }^8}x} \right)dx} \)
Đặt \(t = \tan x\)\( \Rightarrow dt = \frac{{dx}}{{{{\cos }^2}x}}\) \( = \left( {1 + {{\tan }^2}x} \right)dx\) \( = \left( {1 + {t^2}} \right)dx\)
\( \Rightarrow dx = \frac{{dt}}{{1 + {t^2}}}\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{\pi }{4} \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {\left( {{t^2} + 2{t^8}} \right)\frac{{dt}}{{{t^2} + 1}}} \)
\(\begin{array}{l} \Rightarrow I = \int\limits_0^1 {\left( {2{t^6} - 2{t^4} + 2{t^2} - 1 + \frac{1}{{{t^2} + 1}}} \right)dt} \\ \Rightarrow I = \left. {\left( {\frac{{2{t^7}}}{7} - \frac{{2{t^5}}}{5} + \frac{{2{t^3}}}{3} - t} \right)} \right|_0^1 + \int\limits_0^1 {\frac{{dt}}{{{t^2} + 1}}} \\ \Rightarrow I = - \frac{{47}}{{105}} + {I_1}\end{array}\)
Đặt \(t = \tan u\)\( \Rightarrow dt = \frac{1}{{{{\cos }^2}u}}du = \left( {1 + {{\tan }^2}u} \right)du\)
Đổi cận: \(\left\{ \begin{array}{l}t = 0 \Rightarrow u = 0\\t = 1 \Rightarrow u = \frac{\pi }{4}\end{array} \right.\).
Khi đó ta có: \({I_1} = \int\limits_0^{\frac{\pi }{4}} {\frac{{\left( {1 + {{\tan }^2}u} \right)du}}{{1 + {{\tan }^2}u}}} = \int\limits_0^{\frac{\pi }{4}} {du} = \frac{\pi }{4}\).
\( \Rightarrow I = - \frac{{47}}{{105}} + \frac{\pi }{4}\)\( \Rightarrow a = 47,\,\,b = 105,\,\,c = 4\)
Vậy \(T = a + b + c\)\( = 47 + 105 + 4 = 156\)