Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có đồ thị như hình vẽ dưới đây.
Tìm \(m\) để hàm số \(y = f({x^2} + m)\) có 3 điểm cực trị.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDễ thấy hàm số \(f(x^2+m)\) là hàm chẵn, để hàm số này có 3 điểm cực trị thì hàm số này phải có đúng 1 điểm cực trị dương
Ta có: \(y' = 2x.f'\left( {{x^2} + m} \right),y' = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
f'\left( {{x^2} + m} \right) = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
{x^2} + m = 0\\
{x^2} + m = 1\\
{x^2} + m = 3
\end{array} \right.\)
Chú ý rằng đồ thị hàm số \(y = f'\left( x \right)\) tiếp xúc với trục hoành tại điểm có hoành độ bằng 1 nên các nghiệm của \({x^2} + m = 1\) (nếu có) không làm cho \(f'\left( {{x^2} + m} \right)\) đổi dấu khi x đi qua, do đó các điểm cực trị của hàm số \(y = f\left( {{x^2} + m} \right)\) là các nghiệm của hệ \(\left[ \begin{array}{l}
x = 0\\
{x^2} + m = 0\\
{x^2} + m = 3
\end{array} \right.\)
Hệ này có duy nhất 1 nghiệm dương khi và chỉ khi \(\left\{ \begin{array}{l}
- m \ge 0\\
3 - m > 0
\end{array} \right. \Leftrightarrow 0 \le m < 3\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Vĩnh Phúc lần 1