Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với mặt phẳng \(\left( ABC \right),\) biết \(AB=AC=a,BC=a\sqrt{3}.\) Tính góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAC \right).\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\left\{ \begin{array}{l} SA = \left( {SAB} \right) \cap \left( {SAC} \right)\\ AB \bot SA\left( {SA \bot \left( {ABC} \right)} \right)\\ AC \bot SA\left( {SA \bot \left( {ABC} \right)} \right)\\ AB \subset \left( {SAB} \right)\\ AC \subset \left( {SAC} \right) \end{array} \right. \Rightarrow \left( {\left( {SAB} \right),\left( {SAC} \right)} \right) = \left( {AB,AC} \right)\)
\(\Delta ABC\) có: \(\cos \widehat{A}=\frac{A{{B}^{2}}+A{{C}^{2}}-B{{C}^{2}}}{2.AB.AC}=-\frac{1}{2}\Rightarrow \widehat{A}={{120}^{0}}.\)
\(\Rightarrow \left( \left( SAB \right),\left( SAC \right) \right)={{60}^{0}}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Bắc Ninh lần 3