Cho tam diện vuông \(O.ABC\) có bán kính mặt cầu ngoại tiếp và nội tiếp lần lượt là \(R\) và \(r.\) Khi đó tỉ số \(\frac{R}{r}\) đạt giá trị nhỏ nhất là \(\frac{x+\sqrt{y}}{2}.\) Tính \(P=x+y.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(OA=a,OB=b,OC=c.\)
Gọi \(M\) là trung điểm của \(BC,\) dựng trục đường tròn \(\Delta \) ngoại tiếp tam giác \(OBC,\) trên mặt phẳng \(\left( OAM \right),\) kẻ đường trung trực của đoạn \(OA\) cắt \(\Delta \) tại \(I\) là tâm mặt cầu ngoại tiếp hình chóp \(O.ABC.\)
+) \(OM=\frac{1}{2}BC=\frac{1}{2}\sqrt{{{b}^{2}}+{{c}^{2}}},R=\sqrt{M{{I}^{2}}+O{{M}^{2}}}=\frac{1}{2}\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}.\)
+) Gọi \(H\) là chân đường cao hạ từ đỉnh \(A\) của tam giác \(ABC,\) suy ra:
\(\left\{ \begin{align} & BC\bot AH \\ & BC\bot AO \\ \end{align} \right.\Rightarrow BC\bot \left( OAH \right)\Rightarrow BC\bot OH.\)
\(\frac{1}{O{{H}^{2}}}=\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}\Rightarrow OH=\frac{bc}{\sqrt{{{b}^{2}}+{{c}^{2}}}}\Rightarrow AH=\sqrt{O{{A}^{2}}+O{{H}^{2}}}=\sqrt{{{a}^{2}}+\frac{{{b}^{2}}{{c}^{2}}}{{{b}^{2}}+{{c}^{2}}}}=\sqrt{\frac{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}{\sqrt{{{b}^{2}}+{{c}^{2}}}}}\)
Suy ra \({{S}_{\Delta ABC}}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}}{\sqrt{{{b}^{2}}+{{c}^{2}}}}.\sqrt{{{b}^{2}}+{{c}^{2}}}=\frac{1}{2}\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}.\)
+) Gọi J là tâm mặt cầu nội tiếp hình chóp \(O.ABC.\)
Khi đó: \(d\left( J;\left( OAB \right) \right)=d\left( J;\left( OBC \right) \right)=d\left( J;\left( OAC \right) \right)=d\left( J;\left( ABC \right) \right)=r.\)
\({{V}_{O.ABC}}={{V}_{J.ABC}}+{{V}_{J.OBC}}+{{V}_{J.AOC}}+{{V}_{J.ABO}}\Leftrightarrow \frac{1}{6}abc=\frac{1}{3}r\left( {{S}_{\Delta ABC}}+{{S}_{\Delta OBC}}+{{S}_{\Delta AOC}}+{{S}_{\Delta ABO}} \right)\)
\(\Leftrightarrow \frac{1}{2}abc=r\left( \frac{1}{2}\sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+\frac{1}{2}\left( ab+bc+ca \right) \right).\)
\(\Leftrightarrow \frac{1}{r}=\frac{1}{abc}\left( \sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+ab+bc+ca \right).\)
Suy ra: \(\frac{R}{r}=\frac{1}{2}.\frac{1}{abc}.\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\left( \sqrt{{{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}}+ab+bc+ca \right)\)
\(\ge \frac{1}{2}.\frac{1}{abc}.\sqrt{3\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}}}\left( \sqrt{3\sqrt[3]{{{a}^{2}}{{b}^{2}}.{{a}^{2}}{{c}^{2}}.{{b}^{2}}{{c}^{2}}}}+3\sqrt[3]{ab.bc.ca} \right)\)
\(=\frac{1}{2}.\frac{1}{abc}.\sqrt{3}.\sqrt[3]{abc}\left( \sqrt{3}.\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}}+3\sqrt[3]{{{a}^{2}}{{b}^{2}}{{c}^{2}}} \right)=\frac{3+3\sqrt{3}}{2}=\frac{3+\sqrt{27}}{2}.\)
Vậy \(P=a+b=30.\) Dấu “=” xảy ra khi \(a=b=c\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Quế Võ 1 lần 2