Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Hạ Long lần 3
-
Câu 1:
Diện tích toàn phần của hình trụ có bán kính đáy R=2, chiều cao h=3 bằng
-
Câu 2:
Phương trình \({{4}^{2x-4}}=16\) có nghiệm là
-
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
-
Câu 4:
Cho hàm số f(x) có đạo hàm trên đoạn \(\left[ 0;2 \right]\) và \(f(0)=-1;\text{ }f(2)=2\). Tích phân \(\int\limits_{0}^{2}{{f}'(x)d\text{x}}\) bằng
-
Câu 5:
Tính môđun của số phức z thỏa mãn \(z(1-i)+2i=1\).
-
Câu 6:
Tìm giá trị lớn nhất của hàm số \(y=\frac{2\text{x}-1}{x+5}\) trên đoạn \(\left[ -1;3 \right]\).
-
Câu 7:
Tập nghiệm S của bất phương trình \({{\log }_{2}}\left( 1-x \right)\le 1\) là
-
Câu 8:
Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là
-
Câu 9:
Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là
-
Câu 10:
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\left[ -3;3 \right]\) và có bảng xét dấu đạo hàm như hình bên.
Mệnh đề nào sau đây sai về hàm số đó?
-
Câu 11:
Từ các chữ số 1, 2, 3, 4, 6, 7 lập được bao nhiêu số tự nhiên gồm ba chữ số khác nhau?
-
Câu 12:
Rút gọn biểu thức \(P={{x}^{\frac{1}{2}}}.\sqrt[4]{x}\) với x> 0
-
Câu 13:
Cho cấp số nhân \(({{u}_{n}})\) với \({{u}_{1}}=2,\text{ }q=4\). Tổng của 5 số hạng đầu tiên bằng
-
Câu 14:
Cho hàm số f(x) liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y=f(x)\), \(y=0,\text{ }x=0\) và \(x=4\) (như hình vẽ). Mệnh đề nào dưới đây là đúng?
-
Câu 15:
Kí hiệu \({{z}_{1}},\text{ }{{\text{z}}_{2}}\) là hai nghiệm phức của phương trình \({{z}^{2}}+(1-2i)z-1-i=0\). Giá trị của \(\left| {{z}_{1}} \right|+\left| {{z}_{2}} \right|\) bằng
-
Câu 16:
Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?
-
Câu 17:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
-
Câu 18:
Tính thể tích của khối lập phương \(ABC\text{D}.{A}'{B}'{C}'{D}'\), biết \(A{C}'=2\text{a}\sqrt{3}\).
-
Câu 19:
Tích phân \(I=\int\limits_{0}^{1}{{{e}^{x+1}}}dx\) bằng
-
Câu 20:
Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng
-
Câu 21:
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
-
Câu 22:
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow{u}=(3;-4;5)\) và \(\overrightarrow{v}=(2m-n;1-n;m+1)\), với m, n là các tham số thực. Biết rằng \(\overrightarrow{u}=\overrightarrow{v}\) tính \(m+n\).
-
Câu 23:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng
-
Câu 24:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & 1\text{x}=2+2t \\ & y=-1-3t \\ & z=1 \\ \end{align} \right.(t\in \mathbb{R})\). Xét đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-3}{m}=\frac{z+2}{-2}\), với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng Δ vuông góc với đường thẳng d.
-
Câu 25:
Tính đạo hàm của hàm số \(y={{\log }_{\frac{3}{4}}}\left| x \right|\).
-
Câu 26:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2\left( x+2y+3z \right)=0\). Gọi A, B, C lần lượt là giao điểm (khác gốc tọa độ O) của mặt cầu (S) và các trục tọa độ Ox, Oy, Oz. Phương trình mặt phẳng \(\left( ABC \right)\) là
-
Câu 27:
Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I\left( 0;1;-1 \right)\) và tiếp xúc với mặt phẳng \(\left( P \right):2x-y+2z-3=0\) là
-
Câu 28:
Cho hàm số \(f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d\text{ }(a,b,c,d\in \mathbb{R})\). Đồ thị của hàm số \(y=f(x)\) như hình vẽ bên. Số nghiệm thực của phương trình \(2\left| f(x) \right|-3=0\) là
-
Câu 29:
Cho hàm số \(f\left( x \right)\) có đạo hàm \({f}'\left( x \right)=\left( {{x}^{2}}+x \right){{\left( x-2 \right)}^{2}}\left( {{2}^{x}}-4 \right),\forall x\in \mathbb{R}.\) Số điểm cực trị của \(f\left( x \right)\) là
-
Câu 30:
Một bác thợ gốm làm một cái lọ có dạng khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường y = \(\sqrt{1+x}\) và trục Ox quay quanh Ox. Biết đáy lọ và miệng lọ có đường kính lần lượt là 2 dm và 4 dm, khi đó thể tích của lọ là:
-
Câu 31:
Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:
-
Câu 32:
Cho hình nón đỉnh S, đáy là đường tròn nội tiếp tam giác ABC. Biết rằng \(AB=BC=10a,\,AC=12a\), góc tạo bởi hai mặt phẳng \(\left( SAB \right)\) và \(\left( ABC \right)\) bằng \(45{}^\circ \). Tính thể tích V của khối nón đã cho.
-
Câu 33:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng
-
Câu 34:
Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?
-
Câu 35:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x-5y-z=0\) và đường thẳng \(d:\frac{x-1}{1}=\frac{y+1}{1}=\frac{z-3}{-1}\). Viết phương trình đường thẳng \(\Delta \) vuông góc mặt phẳng \(\left( P \right)\) tại giao điểm của đường thẳng d và mặt phẳng \(\left( P \right).\)
-
Câu 36:
Cho bình nước hình trụ có bán kính đáy \({{r}_{1}}\) và chiều cao \({{h}_{1}}\) (có bỏ qua chiều dày đáy và thành bình), hai quả nặng A và B dạng hình cầu đặc có bán kính lần lượt là r và 2r. Biết rằng \({{h}_{1}}>2{{r}_{1}},{{r}_{1}}>2r\) và bình đang chứa một lượng nước. Khi ta bỏ quả cầu A và bình thì thấy thể tích nước tràn ra là 2 lít. Khi ta nhấc quả cầu A ra và thả quả cầu B vào bình thì thể tích nước tràn ra là 7 lít. Giá trị bán kính r bằng
-
Câu 37:
Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?
-
Câu 38:
Cho a và b là hai số thực dương khác 1 và các hàm số \(y={{a}^{x}},y={{b}^{x}}\) có đồ thị như hình vẽ.
Đường thẳng \(y=3\) cắt trục tung, đồ thị hàm số \(y={{a}^{x}},y={{b}^{x}}\) lần lượt các điểm H, M, N. Biết rằng HM=2MN. Mệnh đề nào sau đây đúng?
-
Câu 39:
Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng
-
Câu 40:
Cho A là tập các số tự nhiên có 7 chữ số. Lấy một số bất kỳ của tập A .Tính xác suất để lấy được số lẻ và chia hết cho 9.
-
Câu 41:
Trong không gian Oxyz, cho hai đường thẳng \(d:\left\{ \begin{array}{l} x = - 1 - 2t\\ y = t\\ z = - 1 + 3t \end{array} \right.;\,d':\left\{ \begin{array}{l} x = 2 + t\prime \\ y = - 1 + 2t\prime \\ z = - 2t\prime \end{array} \right.\) và mặt phẳng \((P):x+y+z+2=0.\) Đường thẳng vuông góc với mặt phẳng (P) và cắt cả hai đường thẳng \(d,{d}'\) có phương trình là
-
Câu 42:
Cho hàm số \(y={{x}^{3}}+a{{x}^{2}}+bx+c\)có đồ thị (C). Biết rằng tiếp tuyến d của (C) tại điểm A có hoành độ bằng -1 cắt (C) tại B có hoành độ bằng 2 (xem hình vẽ). Diện tích hình phẳng giới hạn bởi d và (C) (phần gạch chéo trong hình vẽ) bằng
-
Câu 43:
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2mx + 3\,\,\,\left( {x \le 1} \right)}\\ {nx + 10\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x > 1} \right)} \end{array}} \right.\), trong đó m,n là hai tham số thực. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left( x \right)\) có đúng hai điểm cực trị?
-
Câu 44:
Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?
-
Câu 45:
Gọi \(S\) là tập chứa tất cả các giá trị nguyên của tham số m để bất phương trình \(\log \left( 60{{x}^{2}}+120x+10m-10 \right)>1+3\log \left( x+1 \right)\) có miền nghiệm chứa đúng 4 giá trị nguyên của biến \(x\). Số phần tử của S là
-
Câu 46:
Cho hàm số \(y=f\left( x \right)\) có đạo hàm đến cấp hai trên \(\mathbb{R}\) và \(f\left( 0 \right)=0;f''\left( x \right)>-\frac{1}{6},\forall x\in \mathbb{R}\). Biết hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(g\left( x \right)=\left| f\left( {{x}^{2}} \right)-mx \right|\), với m là tham số dương, có nhiều nhất bao nhiêu điểm cực trị?
-
Câu 47:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K là trung điểm của SC. Mặt phẳng \(\left( P \right)\) qua AK và cắt các cạnh SB,SD lần lượt tại M và N. Đặt \({{V}_{1}}={{V}_{S.AMKN}},\text{ }V={{V}_{S.ABCD}}\). Tìm \(S=\max \frac{{{V}_{1}}}{V}+\min \frac{{{V}_{1}}}{V}\).
-
Câu 48:
Xét các số phức z, w thỏa mãn \(\left| \text{w}-i \right|=2,\text{ }z+2=iw\). Gọi \({{z}_{1}},\text{ }{{\text{z}}_{2}}\) lần lượt là các số phức mà tại đó \(\left| z \right|\) đạt giá trị nhỏ nhất và đạt giá trị lớn nhất. Mođun \(\left| {{z}_{1}}+{{z}_{2}} \right|\) bằng
-
Câu 49:
Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng
-
Câu 50:
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x+y+z-3=0\) và các điểm \(A\left( 3;2;4 \right),B\left( 5;3;7 \right)\). Mặt cầu \(\left( S \right)\) thay đổi đi qua \(A,B\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính \(r=2\sqrt{2}\). Biết tâm của đường tròn \(\left( C \right)\) luôn nằm trên một đường tròn cố định \(\left( {{C}_{1}} \right)\). Bán kính của \(\left( {{C}_{1}} \right)\) là