Trắc nghiệm Nguyên hàm Toán Lớp 12
-
Câu 1:
Hàm số \(F\left( x \right) = 7\sin x - \cos x + 1\) là một nguyên hàm của hàm số nào sau đây?
-
Câu 2:
Họ nguyên hàm của hàm số \(I = \smallint {\left( {{e^x} + 2{e^{ - x}}} \right)^2}dx\) là
-
Câu 3:
Hàm số \(f\left( x \right) = {x^3} - {x^2} + 3 + \frac{1}{x}\) có nguyên hàm là
-
Câu 4:
Biết \(F\left( x \right) = 6\sqrt {1 - x} \) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{a}{{\sqrt {1 - x} }}\). Khi đó giá trị của a bằng
-
Câu 5:
Biết một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {1 - 3x} }} + 1\) là hàm số F(x) thỏa mãn \(F\left( { - 1} \right) = \frac{2}{3}\). Khi đó F(x) là hàm số nào sau đây?
-
Câu 6:
Tìm nguyên hàm của hàm số \(K = \smallint {\left( {x - \frac{1}{x}} \right)^3}dx\)
-
Câu 7:
Tìm nguyên hàm của hàm số \(J = \smallint \frac{{{x^3} - 1}}{{x + 1}}dx\)
-
Câu 8:
Tìm nguyên hàm của hàm số \(I = \smallint \frac{{2{x^2} + x + 1}}{{x - 1}}\)
-
Câu 9:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt[3]{{1 - 3x}}\)
-
Câu 10:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt[3]{{x - 2}}\)
-
Câu 11:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt {5 - 3x} \)
-
Câu 12:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt {2x + 1} \)
-
Câu 13:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {3 - x} }}\) là
-
Câu 14:
Nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {2x - 1} }}\) là
-
Câu 15:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sqrt {{e^{4x - 2}}} \)
-
Câu 16:
Tìm nguyên hàm của hàm số \(f\left( x \right) = {2^x}{.3^{ - 2x}}\)
-
Câu 17:
Họ nguyên hàm của hàm số \(f\left( x \right) = {e^x}\left( {3 + {e^{ - x}}} \right)\) là:
-
Câu 18:
Tìm nguyên hàm của hàm số \(f\left( x \right) = {\sin ^3}x.\cos x\)
-
Câu 19:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{{{\sin }^2}\left( {x + \frac{{\rm{\pi }}}{3}} \right)}}\)
-
Câu 20:
Tìm nguyên hàm của hàm số \(f\left( x \right) = 1 + {\tan ^2}\frac{x}{2}\)
-
Câu 21:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \cos \left( {3x + \frac{{\rm{\pi }}}{6}} \right)\)
-
Câu 22:
Tìm nguyên hàm của hàm số f(x) = sin 2x
-
Câu 23:
Cho số thực m > 1. Tính theo \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGlbGaeyypa0Zaa8qCa8aabaWdbmaabmaapaqaa8qadaWcaaWd % aeaapeGaaGymaaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIZa % aaaaaakiabgUcaRiaaikdaaiaawIcacaGLPaaacaqGKbGaamiEaaWc % paqaa8qacaaIXaaapaqaa8qacaWGTbaaniabgUIiYdaaaa!44A0! K = \int\limits_1^m {\left( {\frac{1}{{{x^3}}} + 2} \right){\rm{d}}x} \) theo m.
-
Câu 24:
Cho a,b là các số thực dương thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMTcvLHfij5gC1rhimfMBNvxyNvga7X1CXjhD7f % wFTW1CXjhD7jwFRetpW0hatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerb % uLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharq % qtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9 % pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9 % vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaa % aaaapeWaaOaaa8aabaWdbiaadggaaSqabaGccqGHsisldaGcaaWdae % aapeGaamOyaaWcbeaakiabgUcaRiaaigdacqGH9aqpcaaIWaaaaa!4CAB! \sqrt a - \sqrt b + 1 = 0\) . Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMDevLHfij5gC1rhimfMBNvxyNvga7LupCLMB0X % fBP1wA0n3x7fwFETNy9ThxMjxyJThx0vgE0Thz9HxF7X1CXjhD7HxF % 91xFamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1 % wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac % H8YjY-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai % -hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqa % aeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjbGaey % ypa0Zaa8qCa8aabaWdbmaalaaapaqaa8qacaqGKbGaamiEaaWdaeaa % peWaaOaaa8aabaWdbiaadIhaaSqabaaaaaWdaeaapeGaamyyaaWdae % aapeGaamOyaaqdcqGHRiI8aaaa!5CEE! I = \int\limits_a^b {\frac{{{\rm{d}}x}}{{\sqrt x }}} \)
-
Câu 25:
Tìm tất cả các tham số thực m > 1 để phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMzfvLHfij5gC1rhimfMBNvxyNvga7XvAUrhxSL % wBPr3CFThm951ET13ECXwzMrhkGidETediCjxANHgDPWfDLHhD7rwF % 41xp7ThE951EY0xFTmdERqtFamXvP5wqSXMqHnxAJn0BKvguHDwzZb % qefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2D % aebbnrfifHhDYfgasaacH8YjY-vipgYlh9vqqj-hEeeu0xXdbba9fr % Fj0-OqFfea0dXdd9vqai-hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVg % Fr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaa % aaaaaaa8qadaWdXbWdaeaapeWaaeWaa8aabaWdbiaaikdacaWG4bGa % eyOeI0IaaGymaaGaayjkaiaawMcaaiaabsgacaWG4baal8aabaWdbi % aaicdaa8aabaWdbiaad2gaa0Gaey4kIipakiabg2da9iaadIhapaWa % aWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaaiodacaWG4bGaey4kaS % IaaGinaaaa!6951! \int\limits_0^m {\left( {2x - 1} \right){\rm{d}}x} = {x^2} - 3x + 4\) có hai nghiệm phân biệt?
-
Câu 26:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape % GaamOzamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaeyypa0Za % aiqaa8aaeaqabeaapeGaamiEaiaaykW7caaMc8UaaGPaVlaabUgaca % qGObGaaeyAa8aacaaMe8+dbiaadIhacqGHLjYScaaIXaaapaqaa8qa % caaIXaGaaGPaVlaaykW7caaMc8UaaGPaVlaabUgacaqGObGaaeyAa8 % aacaaMe8+dbiaadIhacqGH8aapcaaIXaaaaiaawUhaaaaa!579F! f\left( x \right) = \left\{ \begin{array}{l} x\,\,\,{\rm{khi}}\;x \ge 1\\ 1\,\,\,\,{\rm{khi}}\;x < 1 \end{array} \right.\), tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMnevLHfij5gC1rhimfMBNvxyNvgaCLMB0XfBP1 % wA0n3x7btFETNm9TNzCXwzMrhkGGhiCjxANHgDPWfDLHhD7rwF41ha % tCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBae % XatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8 % FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY-biLk % VcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr0-vqpWqaaeaabiGa % ciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaapeWaa8qCa8aabaWdbi % aadAgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaiaabsgacaWG % 4baal8aabaWdbiaaicdaa8aabaWdbiaaikdaa0Gaey4kIipaaaa!5968! \int\limits_0^2 {f\left( x \right){\rm{d}}x} \).
-
Câu 27:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMrevLHfij5gC1rhimfMBNvxyNvga7XvAUrhxSL % wBPr3CFTNm951E103ECzMCHn2ECrxz4r3EK1hE9ThE91xpCXMBGewF % amXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUb % qedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yj % Y-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGu % Q8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGa % ciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbWdaeaape % WaaSaaa8aabaWdbiaabsgacaWG4baapaqaa8qacaWG4baaaaWcpaqa % a8qacaaIYaaapaqaa8qacaaI1aaaniabgUIiYdGccqGH9aqpciGGSb % GaaiOBaiaadggaaaa!5C64! \int\limits_2^5 {\frac{{{\rm{d}}x}}{x}} = \ln a\). Tìm a
-
Câu 28:
Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMDevLHfij5gC1rhimfMBNvxyNvgaCLMB0XfBP1 % wA0n3x7btFETxB9ThxSvMz0HciYGxlXacxYL2zOrxkCrxz4r3EK1hE % 91JmamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1 % wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac % H8YjY-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai % -hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqa % aeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbWdae % aapeWaaeWaa8aabaWdbiaaikdacaWG4bGaeyOeI0IaaGymaaGaayjk % aiaawMcaaiaabsgacaWG4baal8aabaWdbiaaicdaa8aabaWdbiaad2 % gaa0Gaey4kIipakiabg2da9iaaikdaaaa!5DBB! \int\limits_0^m {\left( {2x - 1} \right){\rm{d}}x} = 2\) thì m có giá trị.
-
Câu 29:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMDevLHfij5gC1rhimfMBNvxyNvgaCLMB0XfBP1 % wA0n3x7btFETxB9ThxSvMz0HciYG3k2acxYL2zOrxkCrxz4r3EK1hE % 91ZnamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1 % wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaac % H8YjY-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai % -hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqa % aeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbWdae % aapeWaaeWaa8aabaWdbiaaikdacaWG4bGaey4kaSIaaGOnaaGaayjk % aiaawMcaaiaabsgacaWG4baal8aabaWdbiaaicdaa8aabaWdbiaad2 % gaa0Gaey4kIipakiabg2da9iaaiEdaaaa!5DC2! \int\limits_0^m {\left( {2x + 6} \right){\rm{d}}x} = 7\). Tìm m
-
Câu 30:
Trong các đẳng thức sau đẳng thức nào sai?
-
Câu 31:
Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaaigdaaeaacaaIYaGaaeiEaiabgUcaRiaaiwdaaaGaaeiz % aiaadIhaaSqaaiaaicdaaeaacaaIXaaaniabgUIiYdaaaa!3FD9! \int\limits_0^1 {\frac{1}{{2{\rm{x}} + 5}}{\rm{d}}x} \) bằng
-
Câu 32:
Giả sử \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaaigdaaeaacaaIYaGaamiEaiabgUcaRiaaigdaaaGaaeiz % aiaadIhaaSqaaiaaigdaaeaacaaIYaaaniabgUIiYdGccqGH9aqpci % GGSbGaaiOBamaakaaabaWaaSaaaeaacaWGHbaabaGaamOyaaaaaSqa % baaaaa!44C3! \int\limits_1^2 {\frac{1}{{2x + 1}}{\rm{d}}x} = \ln \sqrt {\frac{a}{b}} \) với \(a,b \in N^*\) và a,b < 10 . TÍnh \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamytaiabg2 % da9iaadggacqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaaaaaa!3B62! M = a + {b^2}\)
-
Câu 33:
Tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaaigdaaeaadaGcaaqaaiaadIhacqGHRaWkcaaIXaaaleqa % aaaakiaabsgacaWG4baaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aa % aa!3F3F! \int\limits_0^1 {\frac{1}{{\sqrt {x + 1} }}{\rm{d}}x} \) bằng
-
Câu 34:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamiEamaaCaaaleqabaGaaGOmaiaaicdacaaIXaGa % aGioaaaakmaabmaabaGaaGymaiabgUcaRiaadIhaaiaawIcacaGLPa % aacaqGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaaaa!45D3! I = \int\limits_0^1 {{x^{2018}}\left( {1 + x} \right){\rm{d}}x} \)
-
Câu 35:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaOaaaeaacaaI0aGaamiEaiabgUcaRiaaigdaaSqa % baGccaqGKbGaamiEaaWcbaGaaGimaaqaaiaaikdaa0Gaey4kIipaaa % a!4108! I = \int\limits_0^2 {\sqrt {4x + 1} {\rm{d}}x} \)
-
Câu 36:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaWaaeWaaeaacaaIYaGaamiEaiabgUcaRiaaigdaaiaa % wIcacaGLPaaacaqGKbGaamiEaaWcbaGaaGimaaqaaiaaigdaa0Gaey % 4kIipaaaa!4269! I = \int\limits_0^1 {\left( {2x + 1} \right){\rm{d}}x} \)
-
Câu 37:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % WcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bGa % ey4kaSIaaGymaaqaaiaadIhacqGHRaWkcaaIXaaaaiaabsgacaWG4b % Gaeyypa0JaamyyaiabgUcaRiGacYgacaGGUbWaaSaaaeaacaWGIbaa % baGaaGOmaaaaaSqaaiaaiodaaeaacaaI1aaaniabgUIiYdaaaa!4A38! \int\limits_3^5 {\frac{{{x^2} + x + 1}}{{x + 1}}{\rm{d}}x = a + \ln \frac{b}{2}} \) với a, b là các số nguyên. Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9iaadkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGHbaaaa!3B7E! S = {b^2} - a\)
-
Câu 38:
Cho a là số thực thỏa mãn |a| < 2 và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaaikdacaWG4bGaey4kaSIaaGymaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaWGHbaabaGaaGOmaaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!4290! \int\limits_a^2 {\left( {2x + 1} \right){\rm{d}}x} = 4\). Giá trị biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgU % caRiaadggadaahaaWcbeqaaiaaiodaaaaaaa!3961! 1 + {a^3}\) bằng.
-
Câu 39:
Tính tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMPevLHfij5gC1rhimfMBNvxyNvga7LupCLMB0X % fBP1wA0n3x7btFEThxMjxyJThxWLgi9Thn913E7Thx0fMBG0Nx7jtF % 91hEKHxFamXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3b % IuV1wyUbqedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfga % saacH8YjY-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9 % vqai-hGuQ8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9ad % baqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGjb % Gaeyypa0Zaa8qCa8aabaWdbiGacshacaGGHbGaaiOBa8aadaahaaWc % beqaa8qacaaIYaaaaaWdaeaapeGaaGimaaWdaeaapeWaaSaaa8aaba % Wdbiabec8aWbWdaeaapeGaaGinaaaaa0Gaey4kIipakiaadIhacaqG % KbGaamiEaaaa!61F8! I = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^2}} x{\rm{d}}x\)
-
Câu 40:
Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaah % aakmaakaaajaaObaGaamiEaaqcbaAabaqcaaQaaeiiaKaaalaabsga % caWG4baajqwaacqaaiaadggaaeaacaWGIbaajmaWcqGHRiI8aKaaal % abg2da9OWaaSaaaKaaahaacaaIYaaabaGaaG4maaaaaaa!4722! \int\limits_a^b {\sqrt x {\rm{ d}}x} = \frac{2}{3}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaqadaWdaeaapeGaamyyaiabgwMiZkaaicdacaGGSaGaaGPaVlaa % ykW7caWGIbGaeyyzImRaaGimaaGaayjkaiaawMcaaaaa!424F! \left( {a \ge 0,\,\,b \ge 0} \right)\) thì
-
Câu 41:
Nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9iaadIhadaahaaWcbeqaaiaaikdaaaGc % cqGHRaWkdaWcaaqaaiaaiodaaeaacaWG4baaaiabgkHiTiaaikdada % GcaaqaaiaadIhaaSqabaaaaa!4198! f(x) = {x^2} + \frac{3}{x} - 2\sqrt x \) là.
-
Câu 42:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqi-C0dh9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maabmaabaGaaG4maiaadIhacqGHsisl % caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI1aaaaaaa!3F86! f(x) = {\left( {3x - 1} \right)^5}\)
-
Câu 43:
Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVC0dg9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabgkHiTiaadIhadaah % aaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaamiEamaaCaaaleqaba % GaaGOmaaaakiabgkHiTiaaigdaaaa!41E4! f\left( x \right) = - {x^3} + 3{x^2} - 1\). Một nguyên hàm F(x) của hàm số f(x) thỏa mãn F(1) = 2 là.
-
Câu 44:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % aiaadIhadaGcaaqaaiaadIhaaSqabaaaaaaa!3D4B! f\left( x \right) = \frac{1}{{x\sqrt x }}\)
-
Câu 45:
Biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaad2gacaGGUaGaamiE % amaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdaaaa!3F7F! F\left( x \right) = m.{x^4} + 2\) là một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaiodaaaaaaa!3C52! f\left( x \right) = {x^3}\), giá trị của m là.
-
Câu 46:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaaGymaiaa % iwdacqGHsislcaaIXaGaaGOmaiaadIhaaiaawIcacaGLPaaadaahaa % WcbeqaaiaaiIdaaaaaaa!41C0! h\left( x \right) = {\left( {15 - 12x} \right)^8}\). Tìm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WGObWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaeizaiaadIhaaSqa % beqaniabgUIiYdaaaa!3D46! \int {h\left( x \right){\rm{d}}x} \)
-
Câu 47:
Nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhacqGHRaWkcaaI % YaWaaWbaaSqabeaacaWG4baaaaaa!3E30! f\left( x \right) = x + {2^x}\) là:
-
Câu 48:
Chỉ ra công thức sai trong các công thức nguyên hàm sau:
-
Câu 49:
Tính nguyên hàm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aerbdfgBPjMCPbqeeuuDJXwAKbsr4rNCHbGeaGqiVu0Je9sqqrpepC % 0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yq % aqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabe % qaamaaeaqbaaGcbaWaa8qaaeaadaWcaaqaaiaaigdaaeaacaaIXaGa % ey4kaSIaamiEaaaacaWGKbGaamiEaaWcbeqab0Gaey4kIipaaaa!4434! \int {\frac{1}{{1 + x}}dx} \)
-
Câu 50:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakaaabaGaamiEaaWc % beaaaaa!3B83! f\left( x \right) = \sqrt x \)