Trắc nghiệm Nguyên hàm Toán Lớp 12
-
Câu 1:
Nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiEdacaWG4bWaaWba % aSqabeaacaaI1aaaaaaa!3D15! f\left( x \right) = 7{x^5}\) là.
-
Câu 2:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaikdadaahaaWcbeqa % aiaaikdacaWG4baaaaaa!3D0C! f\left( x \right) = {2^{2x}}\)
-
Câu 3:
Biết f(x) có một nguyên hàm là \(17^x\). Xác định biểu thức f(x).
-
Câu 4:
Cho hàm số y = f(x) liên tục trên R và thoả mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqi-CI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9 % Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWdbaqaaiaadA % gadaqadaqaaiaadIhaaiaawIcacaGLPaaacaqGKbGaamiEaiabg2da % 9iaaisdacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaG4mai % aadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamiEaiab % gUcaRiaadoeaaSqabeqaniabgUIiYdaaaa!4875! \int {f\left( x \right){\rm{d}}x = 4{x^3} - 3{x^2} + 2x + C} \). Hàm số f(x) là:
-
Câu 5:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq-JbbG8A8frFve9 % Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaey % ypa0JaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIhaaaa!3C2F! y = {x^2} + x\) là
-
Câu 6:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhadaahaaWcbeqaaiaaiodaaaaaaa!39DD! y = {x^3}\)
-
Câu 7:
Họ các nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaabwgadaahaaWcbeqa % aiaaikdacaWG4bGaey4kaSIaaG4maaaaaaa!3ED7! f\left( x \right) = {{\rm{e}}^{2x + 3}}\) là
-
Câu 8:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iabgkHiTiaabwgadaah % aaWcbeqaaiabgkHiTiaadIhaaaaaaa!3E57! f\left( x \right) = - {{\rm{e}}^{ - x}}\) là
-
Câu 9:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhadaahaaWcbeqa % aiaaikdaaaGccqGHRaWkciGGZbGaaiyAaiaac6gacaWG4baaaa!40F2! F\left( x \right) = {x^2} + \sin x\) là một nguyên hàm của hàm số:
-
Câu 10:
Tìm một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadwgadaahaaWcbeqa % aiaaiodacaWG4bGaey4kaSIaaGymaaaaaaa!3E84! f\left( x \right) = {e^{3x + 1}}\)
-
Câu 11:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaMaamyEai % abg2da9iaaikdakmaaCaaaleqabaGaamiEaaaaaaa!3A50! y = {2^x}\)
-
Câu 12:
Tìm tất cả nguyên hàm F(x) của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhacqGHsisldaWc % aaqaaiaaigdaaeaacaWG4baaaaaa!3E1D! f\left( x \right) = x - \frac{1}{x}\)
-
Câu 13:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacogacaGGVbGaai4C % aiaaiwdacaWG4baaaa!3EFA! f\left( x \right) = \cos 5x\)
-
Câu 14:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiwdadaahaaWcbeqa % aiaadIhaaaaaaa!3C54! f\left( x \right) = {5^x}\) là
-
Câu 15:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaisdacaWG4bWaaWba % aSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaaicdacaaIXaGaaGioaa % aa!40ED! f\left( x \right) = 4{x^3} + 2018\) là
-
Câu 16:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9 % Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaeWaae % aacaWG4baacaGLOaGaayzkaaGaeyypa0JaamyzamaaCaaaleqabaGa % amiEaaaakiabgUcaRiGacogacaGGVbGaai4CaiaadIhaaaa!40C8! f\left( x \right) = {e^x} + \cos x\) là
-
Câu 17:
Giá trị của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % qGKbGaamiEaaWcbaGaaGimaaqaaiaaiodaa0Gaey4kIipaaaa!3BB7! \int\limits_0^3 {{\rm{d}}x} \) bằng
-
Câu 18:
Trong các khẳng định sau, khẳng đinh nào sai?
-
Câu 19:
Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVC0xf9qq1qpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iGacshacaGGHbGaaiOB % amaaCaaaleqabaGaaGOmaaaakiaaikdacaWG4bGaey4kaSYaaSaaae % aacaaIXaaabaGaaGOmaaaaaaa!41E9! f\left( x \right) = {\tan ^2}2x + \frac{1}{2}\) .
-
Câu 20:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiAdacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaeyOeI0IaaGinaiaadIhacqGHsislcaaIZa % aaaa!416D! f\left( x \right) = 6{x^2} - 4x - 3\)là
-
Câu 21:
Cho F(x) là một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaabwgadaahaaWcbeqa % aiaadIhaaaGccqGHRaWkcaaIYaGaamiEaaaa!3F21! f\left( x \right) = {{\rm{e}}^x} + 2x\) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm % aabaGaaGimaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaG4maaqa % aiaaikdaaaaaaa!3B90! F\left( 0 \right) = \frac{3}{2}\) . Tìm F(x)
-
Câu 22:
Hàm số nào sau đây là một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbuDhidvMBG0evaebbfv3ySLgz % GueE0jxyaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0- % OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr % 0-vr0-vqpWqaaeaabiGaciaacaWabeaabaqaaqaaaOqaaiaadMhacq % GH9aqpcaaIXaGaaGOmaiaadIhadaahaaWcbeqaaiaaiwdaaaaaaa!3BAC! y = 12{x^5}\)
-
Câu 23:
Hàm số nào sau đây không phải là một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maabmaabaGaaG4maiaadIhacqGHRaWk % caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI1aaaaaaa!4007! f(x) = {\left( {3x + 1} \right)^5}\)?
-
Câu 24:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaamiEaiab % gkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaa!3F82! f\left( x \right) = {\left( {x - 1} \right)^3}\) là
-
Câu 25:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9iaaiodacaWG4bWaaWbaaSqabeaacaaI % YaaaaOGaey4kaSIaaGioaiGacohacaGGPbGaaiOBaiaadIhaaaa!4260! f(x) = 3{x^2} + 8\sin x\)
-
Câu 26:
Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG5bGaeyypa0Jaci4CaiaacMgacaGGUbWaaeWaa8aabaWdbiaa % ikdacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaa!3FF9! y = \sin \left( {2x - 1} \right)\)
-
Câu 27:
Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGMbWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab % g2da9iGacohacaGGPbGaaiOBaiaaikdacaaIWaGaaGymaiaaiIdaca % WG4baaaa!4190! f\left( x \right) = \sin 2018x\)
-
Câu 28:
Tìm họ nguyên hàm F(x) của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpciGG % ZbGaaiyAaiaac6gacaaIYaGaamiEaiabgUcaRiaaikdacaWG4baaaa!439A! y = f\left( x \right) = \sin 2x + 2x\)
-
Câu 29:
Cho biết F(x) là một nguyên hàm của hàm số f(x) . Tìm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapeaabaWaamWaaeaacaaIYaGaamOzamaabmaabaGaamiEaaGa % ayjkaiaawMcaaiabgUcaRiaaigdaaiaawUfacaGLDbaacaqGKbGaam % iEaaWcbeqab0Gaey4kIipaaaa!4363! I = \int {\left[ {2f\left( x \right) + 1} \right]{\rm{d}}x} \).
-
Câu 30:
Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiwdadaahaaWcbeqa % aiaadIhaaaGccqGHRaWkcaaIXaaaaa!3DFB! f\left( x \right) = {5^x} + 1\).
-
Câu 31:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iGacogacaGGVbGaai4CaiaaiodacaWG4baaaa!3C85! y = \cos 3x\) là
-
Câu 32:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l % bbf9q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY-biLk % VcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr0-vqpWqaaeaabiGa % ciaacaqabeaabaqaamaaaOqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaacqGH9aqpcaWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaa % aaa!3968! f\left( x \right) = {e^{3x}}\) là:
-
Câu 33:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbb % a9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0Fb9pgeaYRXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada % qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaaIZaGaamiEamaaCaaa % leqabaGaaGOmaaaakiabgUcaRiaaikdacaWG4bGaey4kaSIaaGynaa % aa!4149! f\left( x \right) = 3{x^2} + 2x + 5\) là:
-
Câu 34:
Tìm họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGacaGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiwdadaahaaWcbeqa % aiaadIhaaaaaaa!3C51! f\left( x \right) = {5^x}\)
-
Câu 35:
Một nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaamOzaO % WaaeWaaKaaahaacaWG4baacaGLOaGaayzkaaGaeyypa0Jcdaqadaqc % aaCaaiaadIhacqGHsislcaaIZaaacaGLOaGaayzkaaGcdaahaaqcba % CabeaacaaIYaaaaaaa!42BB! f\left( x \right) = {\left( {x - 3} \right)^2}\) trên R là:
-
Câu 36:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaSaamOzaO % WaaeWaaKaaahaacaWG4baacaGLOaGaayzkaaGaeyypa0JccaqGLbWa % aWbaaKqaahqabaGaeyOeI0YcdaWcaaqcbaCaaiaadIhaaeaacaaIYa % aaaaaaaaa!416F! f\left( x \right) = {{\rm{e}}^{ - \frac{x}{2}}}\). Mệnh đề nào sau đây đúng
-
Câu 37:
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaQaamOzaO % WaaeWaaKaaGgaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaci4yaiaa % c+gacaGGZbGaaG4maiaadIhaaaa!4053! f\left( x \right) = \cos 3x\). Mệnh đề nào sau đây đúng
-
Câu 38:
Tất cả nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % aiaaikdacaWG4bGaey4kaSIaaG4maaaaaaa!3E8E! f\left( x \right) = \frac{1}{{2x + 3}}\) là
-
Câu 39:
Nguyên hàm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaci % GGZbGaaiyAaiaac6gacaaIYaGaamiEaiaabsgacaWG4baaleqabeqd % cqGHRiI8aaaa!3E63! \int {\sin 2x{\rm{d}}x} \) bằng:
-
Câu 40:
Họ nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiodacaWG4bWaaWba % aSqabeaacaaIYaaaaOGaey4kaSIaci4CaiaacMgacaGGUbGaamiEaa % aa!41CF! f\left( x \right) = 3{x^2} + \sin x\) là
-
Câu 41:
Nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaikdacaWG4bWaaWba % aSqabeaacaaIZaaaaOGaeyOeI0IaaGyoaaaa!3EC8! f\left( x \right) = 2{x^3} - 9\) là:
-
Câu 42:
Nguyên hàm F(x) của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMrdvLHfij5gC1rhimfMBNvxyNvgaMXfBLzgDOa % cEGWLCPDgA0LspCzMCHn2EX03EYG3kX0hatCvAUfeBSjuyZL2yd9gz % LbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYL % wzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY-Hhbbf9 % v8qqaqFr0xc9pk0xbba9q8WqFfeaY-biLkVcLq-JHqpepeea0-as0F % b9pgeaYRXxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaa % aOqaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacaWG4baacaGLOa % GaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikda % caWG4bGaey4kaSIaaGymaaaaaaa!5169! f\left( x \right) = \frac{1}{{2x + 1}}\), biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMrevLHfij5gC1rhimfMBNvxyNvgagXfBLzgDOa % cxMjxyJThx0vgE0Txz91sm9TNm9bcxYL2zOrxk9WLzYf2y7ntF7jtF % amXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUb % qedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yj % Y-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGu % Q8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGa % ciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacaWGgbWaaeWaa8 % aabaWdbmaalaaapaqaa8qacaqGLbGaeyOeI0IaaGymaaWdaeaapeGa % aGOmaaaaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaG4maa % WdaeaapeGaaGOmaaaaaaa!57EA! F\left( {\frac{{{\rm{e}} - 1}}{2}} \right) = \frac{3}{2}\) là:
-
Câu 43:
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaada % qadaqaaiaaikdacaWG4bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaeyypa0 % JaaGymaaaa!42C3! \int\limits_a^b {\left( {2x - 1} \right){\rm{d}}x} = 1\) . Khẳng định nào sau đây là đúng?
-
Câu 44:
Tìm nguyên hàm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapeaabaGaamiEaiGacogacaGGVbGaai4CaiaadIhacaqGKbGa % amiEaaWcbeqab0Gaey4kIipaaaa!4074! I = \int {x\cos x{\rm{d}}x} \)
-
Câu 45:
Nếu gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqi-u0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapeaabaWaaSaaaeaacaWGKbGaaeiEaaqaamaakaaabaGaaGOm % aiaabIhacqGHsislcaaIXaaaleqaaOGaey4kaSIaaGinaaaaaSqabe % qaniabgUIiYdaaaa!40EB! I = \int {\frac{{d{\rm{x}}}}{{\sqrt {2{\rm{x}} - 1} + 4}}} \), thì khẳng định nào sau đây là đúng?
-
Câu 46:
Hàm số nào sau đây không là nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI % cacaWG4bGaaiykaiabg2da9maalaaabaGaamiEaiaacIcacaWG4bGa % ey4kaSIaaGOmaiaacMcaaeaacaGGOaGaamiEaiabgUcaRiaaigdaca % GGPaWaaWbaaSqabeaacaaIYaaaaaaaaaa!4418! f(x) = \frac{{x(x + 2)}}{{{{(x + 1)}^2}}}\) ?
-
Câu 47:
Hàm số nào dưới đây là nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa % amaakaaabaGaaGymaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaa % aabeaaaaaaaa!3EC9! f\left( x \right) = \frac{1}{{\sqrt {1 + {x^2}} }}\) trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVy0Je9yqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % GHsislcqGHEisPcaGG7aGaey4kaSIaeyOhIukacaGLOaGaayzkaaGa % ai4paaaa!3E11! \left( { - \infty ; + \infty } \right)?\)
-
Câu 48:
Nếu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWdbaWdaeaapeGaamOzamaabmaabaGaamiEaaGaayjkaiaawMca % a8aacaqGKbGaamiEaaWcpeqabeqaniabgUIiYdGccqGH9aqpcaWGLb % WdamaaCaaaleqabaWdbiaadIhaaaGccqGHRaWkciGGZbGaaiyAaiaa % c6gacaWG4bGaey4kaSIaam4qaaaa!4750! \int {f\left( x \right){\rm{d}}x} = {e^x} + \sin x + C\) thì f(x) bằng
-
Câu 49:
Biết F(x) là nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMndvLHfij5gC1rhimfMBNvxyNvgaMXfBLzgDOa % cEGWLCPDgA0LspCzMCHn2EX03E41sm9bWexLMBbXgBcf2CPn2qVrwz % qf2zLnharuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPv % MCG4uz3bqee0evGueE0jxyaibaieYlNi-xH8yiVC0xbbL8F4rqqrFf % peea0xe9Lq-Jc9vqaqpepm0xbbG8FasPYRqj0-yi0dXdbba9pGe9xq % -JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaa % keaaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaamiEaaGaayjkai % aawMcaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWG4bGa % eyOeI0IaaGymaaaaaaa!5087! f\left( x \right) = \frac{1}{{x - 1}}\) và F(2) = 1. Khi đó F(3) bằng
-
Câu 50:
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaacI % cacaWG4bGaaiykaiabg2da9iGacYgacaGGUbWaaqWaaeaaciGGZbGa % aiyAaiaac6gacaWG4bGaeyOeI0IaaG4maiGacogacaGGVbGaai4Cai % aadIhaaiaawEa7caGLiWoaaaa!4870! F(x) = \ln \left| {\sin x - 3\cos x} \right|\) là một nguyên hàm của hàm số nào trong các hàm số sau đây.