Tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và ĐTHS \(y = {x^2}\) quanh trục Ox?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp:
Thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(y = f\left( x \right)\); đồ thị hàm số \(y = g\left( x \right)\); đường thẳng \(x = a;{\mkern 1mu} {\mkern 1mu} x = b\) quanh quanh trục Ox là \(V = \int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \).
Cách giải:
Xét phương trình hoành độ giao điểm \(3x - 2 = {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = 2}\end{array}} \right.\).
Vậy thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi đường thẳng \(3x - 2\) và đồ thị hàm số \(y = {x^2}\) quanh quanh trục Ox là \(V = \pi \int\limits_1^2 {\left| {{{\left( {3x - 2} \right)}^2} - {x^4}} \right|dx} {\rm{\;}} = \dfrac{{4\pi }}{5}\).
Chọn D.
Đề thi giữa HK2 môn Toán 12 năm 2023-2024
Trường THPT Lạc Long Quân