Cho tứ diện đều \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacaWGdbGaamiraaaa!3912! ABCD\) , \(M\) là trung điểm của cạnh \(BC\) . Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbWaaeWaaeaacaWGbbGaamOqaiaacYcacaWGebGaamytaaGa % ayjkaiaawMcaaaaa!3E28! \cos \left( {AB,DM} \right)\) bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử tứ diện đều \(ABCD\) có cạnh bằng \(a\) ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaad2 % eacqGH9aqpdaWcaaqaaiaadggadaGcaaqaaiaaiodaaSqabaaakeaa % caaIYaaaaaaa!3B29! DM = \frac{{a\sqrt 3 }}{2}\).
Ta lại có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbWaaeWaaeaadaWhcaqaaiaadgeacaWGcbaacaGLxdcacaGG % SaWaa8HaaeaacaWGebGaamytaaGaay51GaaacaGLOaGaayzkaaGaey % ypa0ZaaSaaaeaadaWhcaqaaiaadgeacaWGcbaacaGLxdcacaGGUaWa % a8HaaeaacaWGebGaamytaaGaay51GaaabaWaaqWaaeaadaWhcaqaai % aadgeacaWGcbaacaGLxdcaaiaawEa7caGLiWoacaGGUaWaaqWaaeaa % daWhcaqaaiaadseacaWGnbaacaGLxdcaaiaawEa7caGLiWoaaaaaaa!576E! \cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {DM} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {DM} } \right|}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaadaWhcaqaaiaadgeacaWGcbaacaGLxdcacaGGUaWaa8Haaeaa % caWGebGaamOqaaGaay51GaGaey4kaSYaa8HaaeaacaWGbbGaamOqaa % Gaay51GaGaaiOlamaaFiaabaGaamOqaiaad2eaaiaawEniaaqaaiaa % dggacaGGUaWaaSaaaeaacaWGHbWaaOaaaeaacaaIZaaaleqaaaGcba % GaaGOmaaaaaaaaaa!4A8F! = \frac{{\overrightarrow {AB} .\overrightarrow {DB} + \overrightarrow {AB} .\overrightarrow {BM} }}{{a.\frac{{a\sqrt 3 }}{2}}}\)
.\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaacaWGHbGaaiOlaiaadggacaGGUaGaci4yaiaac+gacaGGZbGa % aGOnaiaaicdacqGHWcaScqGHRaWkcaWGHbGaaiOlamaalaaabaGaam % yyaaqaaiaaikdaaaGaaiOlaiGacogacaGGVbGaai4CaiaaigdacaaI % YaGaaGimaiabgclaWcqaaiaadggacaGGUaWaaSaaaeaacaWGHbWaaO % aaaeaacaaIZaaaleqaaaGcbaGaaGOmaaaaaaaaaa!506D! = \frac{{a.a.\cos 60^\circ + a.\frac{a}{2}.\cos 120^\circ }}{{a.\frac{{a\sqrt 3 }}{2}}}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS % aaaeaadaWcaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaI % 0aaaaaqaaiaadggacaGGUaWaaSaaaeaacaWGHbWaaOaaaeaacaaIZa % aaleqaaaGcbaGaaGOmaaaaaaGaeyypa0ZaaSaaaeaadaGcaaqaaiaa % iodaaSqabaaakeaacaaI2aaaaaaa!4095! = \frac{{\frac{{{a^2}}}{4}}}{{a.\frac{{a\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{6}\)
Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ % gacaGGZbWaaeWaaeaacaWGbbGaamOqaiaacYcacaWGebGaamytaaGa % ayjkaiaawMcaaiabg2da9maalaaabaWaaOaaaeaacaaIZaaaleqaaa % GcbaGaaGOnaaaaaaa!40E0! \cos \left( {AB,DM} \right) = \frac{{\sqrt 3 }}{6}\)