Cho hàm số: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iabgkHiTmaalaaabaGaamiEamaaCaaaleqabaGaaG4maaaaaOqa % aiaaiodaaaGaey4kaSYaaeWaaeaacaWGHbGaeyOeI0IaaGymaaGaay % jkaiaawMcaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqa % daqaaiaadggacqGHRaWkcaaIZaaacaGLOaGaayzkaaGaamiEaiabgk % HiTiaaisdaaaa!4A24! y = - \frac{{{x^3}}}{3} + \left( {a - 1} \right){x^2} + \left( {a + 3} \right)x - 4\) . Tìm a để hàm số đồng biến trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIWaGaai4oaiaaykW7caaMc8UaaG4maaGaayjkaiaawMcaaaaa!3CC9! \left( {0;\,\,3} \right)\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % Gaeyypa0JaeyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaakiabgUca % RiaaikdadaqadaqaaiaadggacqGHsislcaaIXaaacaGLOaGaayzkaa % GaamiEaiabgUcaRiaadggacqGHRaWkcaaIZaaaaa!44FA! y' = - {x^2} + 2\left( {a - 1} \right)x + a + 3\).
Để hàm số đồng biến trên khoảng \((0;3)\) thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % GaeyyzImRaaGimaiaacYcacaaMc8UaaGPaVlabgcGiIiaadIhacqGH % iiIZdaqadaqaaiaaicdacaGG7aGaaGPaVlaaykW7caaIZaaacaGLOa % Gaayzkaaaaaa!476A! y' \ge 0,\,\,\forall x \in \left( {0;\,\,3} \right)\)
(Dấu chỉ xảy ra tại hữu hạn điểm trên \((0;3)\) ).
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % yyaiabgwMiZoaalaaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiab % gUcaRiaaikdacaWG4bGaeyOeI0IaaG4maaqaaiaaikdacaWG4bGaey % 4kaSIaaGymaaaacaGGSaGaaGPaVlabgcGiIiaadIhacqGHiiIZdaqa % daqaaiaaicdacaGG7aGaaGPaVlaaykW7caaIZaaacaGLOaGaayzkaa % Gaeyi1HSTaamyyaiabgwMiZoaaxababaGaciyBaiaacggacaGG4baa % leaadaqadaqaaiaaicdacaGG7aGaaGPaVlaaykW7caaIZaaacaGLOa % GaayzkaaaabeaakiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaa % aaa!635D! \Leftrightarrow a \ge \frac{{{x^2} + 2x - 3}}{{2x + 1}},\,\forall x \in \left( {0;\,\,3} \right) \Leftrightarrow a \ge \mathop {\max }\limits_{\left( {0;\,\,3} \right)} f\left( x \right)\).
Xét hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaamiEamaa % CaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWG4bGaeyOeI0IaaG % 4maaqaaiaaikdacaWG4bGaey4kaSIaaGymaaaaaaa!4406! f\left( x \right) = \frac{{{x^2} + 2x - 3}}{{2x + 1}}\) trên khoảng \((0;3)\)
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaI % YaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWG4b % Gaey4kaSIaaGioaaqaamaabmaabaGaaGOmaiaadIhacqGHRaWkcaaI % XaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9m % aalaaabaGaaGOmamaabmaabaGaamiEaiabgUcaRmaalaaabaGaaGym % aaqaaiaaikdaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO % Gaey4kaSYaaSaaaeaacaaIXaGaaGynaaqaaiaaikdaaaaabaWaaeWa % aeaacaaIYaGaamiEaiabgUcaRiaaigdaaiaawIcacaGLPaaadaahaa % WcbeqaaiaaikdaaaaaaOGaeyOpa4JaaGimaiaacYcacaaMc8UaaGPa % VlabgcGiIiaadIhacqGHiiIZdaqadaqaaiaaicdacaGG7aGaaGPaVl % aaykW7caaIZaaacaGLOaGaayzkaaaaaa!67A0! f'\left( x \right) = \frac{{2{x^2} + 2x + 8}}{{{{\left( {2x + 1} \right)}^2}}} = \frac{{2{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{{15}}{2}}}{{{{\left( {2x + 1} \right)}^2}}} > 0,\,\,\forall x \in \left( {0;\,\,3} \right)\).
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taam % OzamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa!3BC2! \Rightarrow f\left( x \right)\) luôn đồng biến trên khoảng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIWaGaai4oaiaaykW7caaMc8UaaG4maaGaayjkaiaawMcaaiabgkDi % EpaaxababaGaciyBaiaacggacaGG4baaleaadaqadaqaaiaaicdaca % GG7aGaaGPaVlaaykW7caaIZaaacaGLOaGaayzkaaaabeaakiaadAga % daqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaae % aacaaIZaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaGaaGOm % aaqaaiaaiEdaaaaaaa!5408! \left( {0;\,\,3} \right) \Rightarrow \mathop {\max }\limits_{\left( {0;\,\,3} \right)} f\left( x \right) = f\left( 3 \right) = \frac{{12}}{7}\).
Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw % MiZoaalaaabaGaaGymaiaaikdaaeaacaaI3aaaaaaa!3AF4! m \ge \frac{{12}}{7}\).