\({1 \over {\sin {\pi \over 9}}} - {1 \over {\sqrt 3 \cos {\pi \over 9}}}\) bằng:
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}
\frac{1}{{\sin \frac{\pi }{9}}} - \frac{1}{{\sqrt 3 \cos \frac{\pi }{9}}}\\
= \frac{{\sqrt 3 \cos \frac{\pi }{9} - \sin \frac{\pi }{9}}}{{\sqrt 3 \cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\frac{{\sqrt 3 }}{2}\cos \frac{\pi }{9} - \frac{1}{2}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.2\cos \frac{\pi }{9}\sin \frac{\pi }{9}}}\\
= \frac{{2\left( {\sin \frac{\pi }{3}\cos \frac{\pi }{9} - \cos \frac{\pi }{3}\sin \frac{\pi }{9}} \right)}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{{2\sin \frac{{2\pi }}{9}}}{{\frac{{\sqrt 3 }}{2}.\sin \frac{{2\pi }}{9}}}\\
= \frac{4}{{\sqrt 3 }}
\end{array}\)