Tính giá trị gần đúng (chính xác đến hàng phần trăm) nghiệm của phương trình \(\sin \left( {2x + {\pi \over 6}} \right) = {2 \over 5}\) trong khoảng \(\left( { - {\pi \over 3};{\pi \over 6}} \right)\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(y = 2x + {\pi \over 6}\) thì:
\( - {\pi \over 3} < x < {\pi \over 6} \)\(\Leftrightarrow - {\pi \over 2} < y < {\pi \over 2}\)
Ta có phương trình (với ẩn y) \(\sin y = {2 \over 5}\) (1)
Với \( - {\pi \over 2} < y < {\pi \over 2},\) phương trình (1) có một nghiệm suy nhất là \(y = \arcsin {2 \over 5}.\)
Vậy với \( - {\pi \over 3} < x < {\pi \over 6},\) phương trình đã cho tương đương với phương trình \(2x + {\pi \over 6} = \arcsin {2 \over 5}\)
Do đó nó cũng có một nghiệm duy nhất là \(x = {1 \over 2}\left( {\arcsin {2 \over 5} - {\pi \over 6}} \right)\)
Lấy giá trị gần đúng \(\arcsin {2 \over 5} \approx 0,412\) và \({\pi \over 6} \approx 0,524,\) ta được \(x \approx - 0,06.\)