Đường tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{{x^2} - x - 2}}{{{{(x - 1)}^2}}}\) là:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiVì \(\mathop {\lim }\limits_{x \to 1^{\pm}} \left( {{x^2} - x - 2} \right)\) \( = {1^2} - 1 - 2 = - 2 < 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 1^{\pm} } {\left( {x - 1} \right)^2} = 0\\{\left( {x - 1} \right)^2} > 0,\forall x \ne 1\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{{x^2} - x - 2}}{{{{(x - 1)}^2}}} = - \infty ;\) \(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2} - x - 2}}{{{{(x - 1)}^2}}} = - \infty \) nên x = 1 là tiệm cận đứng.
ADMICRO
YOMEDIA
ZUNIA9