Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200cm^3\) , tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi a,b h, lần lượt là chiều dài, chiều rộng, chiều cao của hố ga.
Ta có hình vẽ:
Ta có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadggacaWGIbGaamiAaiabg2da9iaaiodacaaIYaGaaGimaiaa % icdaaeaadaWcaaqaaiaadIgaaeaacaWGIbaaaiabg2da9iaaikdaaa % Gaay5EaaGaeyi1HS9aaiqaaqaabeqaaiaaikdacaWGHbGaamOyamaa % CaaaleqabaGaaGOmaaaakiabg2da9iaaiodacaaIYaGaaGimaiaaic % daaeaacaWGObGaeyypa0JaaGOmaiaadkgaaaGaay5EaaGaeyi1HS9a % aiqaaqaabeqaaiaadggacqGH9aqpdaWcaaqaaiaaigdacaaI2aGaaG % imaiaaicdaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaaaaaOqaaiaa % dIgacqGH9aqpcaaIYaGaamOyaaaacaGL7baaaaa!5DC2! \left\{ \begin{array}{l} abh = 3200\\ \frac{h}{b} = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2a{b^2} = 3200\\ h = 2b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{{1600}}{{{b^2}}}\\ h = 2b \end{array} \right.\)
Để xây hố tiết kiệm nguyên vật liệu nhất thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaWG4bGaamyCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaa % dgraaeqaaaaa!3B72! {S_{xq}} + {S_{đ}}\) đạt giá trị nhỏ nhất.\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaWG4bGaamyCaaqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaa % dgraaeqaaOGaeyypa0JaaGOmaiaadkgacaWGObGaey4kaSIaaGOmai % aadggacaWGObGaey4kaSIaamyyaiaadkgacqGH9aqpcaaI0aGaamOy % amaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGOnaiaais % dacaaIWaGaaGimaaqaaiaadkgaaaGaey4kaSYaaSaaaeaacaaIXaGa % aGOnaiaaicdacaaIWaaabaGaamOyaaaacqGH9aqpcaaI0aGaamOyam % aaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGioaiaaicda % caaIWaGaaGimaaqaaiaadkgaaaGaeyypa0JaamOzamaabmaabaGaam % OyaaGaayjkaiaawMcaaaaa!5F2B! {S_{xq}} + {S_{đ}} = 2bh + 2ah + ab = 4{b^2} + \frac{{6400}}{b} + \frac{{1600}}{b} = 4{b^2} + \frac{{8000}}{b} = f\left( b \right)\)
Xét \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamOyaaGaayjkaiaawMcaaiabg2da9iaaisdacaWGIbWaaWba % aSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaaI4aGaaGimaiaaic % dacaaIWaaabaGaamOyaaaaaaa!41B6! f\left( b \right) = 4{b^2} + \frac{{8000}}{b}\) trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % aIWaGaai4oaiabgUcaRiabg6HiLcGaayjkaiaawMcaaaaa!3B49! \left( {0; + \infty } \right)\)
Với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWGIbaacaGLOaGaayzkaaGaeyypa0JaaGioaiaadkga % cqGHsisldaWcaaqaaiaaiIdacaaIWaGaaGimaiaaicdaaeaacaWGIb % WaaWbaaSqabeaacaaIYaaaaaaakiabgkDiElqadAgagaqbamaabmaa % baGaamOyaaGaayjkaiaawMcaaiabg2da9iaaicdacqGHuhY2caaI4a % GaamOyamaaCaaaleqabaGaaG4maaaakiabgkHiTiaaiIdacaaIWaGa % aGimaiaaicdacqGH9aqpcaaIWaGaeyi1HSTaamOyaiabg2da9iaaig % dacaaIWaaaaa!59A9! f'\left( b \right) = 8b - \frac{{8000}}{{{b^2}}} \Rightarrow f'\left( b \right) = 0 \Leftrightarrow 8{b^3} - 8000 = 0 \Leftrightarrow b = 10\)
Bảng biến thiên:
Với \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiabg2 % da9iaaigdacaaIWaGaeyO0H4Taamyyaiabg2da9iaaigdacaaI2aaa % aa!3F1A! b = 10 \Rightarrow a = 16\)
Vậy diện tích đáy hố ga để khi xây hố tiết kiệm được nguyên liệu nhất là:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa % aaleaacaWGreaabeaakiabg2da9iaaigdacaaI2aGaaiOlaiaaigda % caaIWaGaeyypa0JaaGymaiaaiAdacaaIWaWaaeWaaeaaieaacaWFJb % Gaa8xBamaaCaaaleqabaGaa8NmaaaaaOGaayjkaiaawMcaaaaa!43CA! {S_{đ}} = 16.10 = 160\left( {c{m^2}} \right)\)